Uncoordinated Multiple Access for Vehicular Networks

Mikhail Ivanov, Fredrik Brännström, Alexandre Graell i Amat, Petar Popovski†

Chalmers University of Technology, Gothenburg, Sweden
†Aalborg University, Aalborg, Denmark

WWVC, Halmstad, November 11, 2014
Motivation

V2X communications

- Numerous applications, e.g., cooperative intelligent transportation systems, automated driving, traffic safety, traffic efficiency, etc.

State-of-the-art ad hoc V2X communications

- 802.11p (slightly modified Wi-Fi) using carrier sense medium access (CSMA)

Main challenges

- difficult propagation channels
- potentially fast changing network topologies
- very strict delay requirements
- very strict reliability requirements
- all-to-all broadcast
Outline

1. Coded Slotted ALOHA: Unicast

2. Error Floor Analysis for Finite Frame Lengths

3. Coded Slotted ALOHA: Broadcast

4. Coded Slotted ALOHA vs Carrier Sense Multiple Access

5. Conclusions and Future Work
Assumptions

- Time is divided into frames each of N slots of equal duration.
- At the beginning of each frame every user has a message to transmit.
- The message size matches the slot duration.

Distribution: $\Lambda(x) = 0.75x^2 + 0.25x^3$
Decoding

Assumptions

- The base station records the entire frame.
- A packet can be reliably decoded if no collision occurs.
- Each packet contains pointers to its replicas.
- The replicas of a received packet can be perfectly removed from the signal.
Performance Measure

Parameters

- number of slots \(N \)
- channel load \(G = \frac{M}{N} \)
- packet loss rate \(\text{PLR} = \frac{M - \# \text{resolved users}}{M} = 1 - \frac{\text{Th}}{G} \)

Throughput

MAC is usually interested in

We are interested in

Packet loss rate

\(\epsilon \)
CSA and Codes on Graphs

Identical to LDPC decoder on binary erasure channel!

Similarities

- believe propagation on erasure channel
- density evolution (EXIT chart)
- threshold phenomenon

Differences

- no channel
- graph is not known a priori
- negative code rate
Finite Frame Length

Distribution $\Lambda(x) = 0.15x^2 + 0.69x^3 + 0.16x^8$

Frame length $N = 200$
Stopping Sets
Error Floor

Distribution $\Lambda(x) = 0.15x^2 + 0.69x^3 + 0.16x^8$

Frame length $N = 200$
All-to-All Broadcast

Notes

- Users with different degrees have different decoding capabilities.
- Removing a finite number of the columns does not affect the asymptotic analysis.
- Removing slots can be seen as changing the distribution.
- Degree-1 users are present in the new distribution.
Stopping Sets

Additional Stopping Sets
Simulation Results

Distribution $\Lambda(x) = 0.15x^2 + 0.69x^3 + 0.16x^8$

Frame length $N = 200$
CSA vs CSMA

Distribution $\Lambda(x) = 0.86x^3 + 0.14x^8$
Conclusions and Future Work

Conclusions

- Finite frame length analysis is reasonably accurate
- Finite frame length is needed for controlling latency
- All-to-all broadcast is different from traditional MAC both in terms of performance metrics and analysis
- CSA seems to significantly outperform CSMA

Future work

- Design of good distributions for all-to-all broadcast
- Error floor reduction
- How to utilize (priorities?) or remove unequal error protection
- SINR model for interference cancellation
- Introduce frameless structure

Thank you!