Does ETSI beaconing frequency control provide cooperative awareness?

Nikita Lyamin, Alexey Vinel, Magnus Jonsson
{nikita.lyamin, alexey.vinel, magnus.jonsson}@hh.se

Halmstad University

Halmstad
November 11, 2014
CAMs triggering in accordance to the ETSI EN 302 637–2 demonstrates a poor performance in a platooning scenario
System Model

Car\textsubscript{N-1} Car\textsubscript{N-2} \cdots Car\textsubscript{2} Car\textsubscript{1}

Leading vehicle

communication range

N vehicles
Each vehicle:

- generates CAMs in accordance to the ETSI EN 302 637-2 "Specification of Cooperative Awareness Basic Service";
Each vehicle:

- generates CAMs in accordance to the ETSI EN 302 637-2 "Specification of Cooperative Awareness Basic Service";
- transmits CAMs on a dedicated channel in accordance to the IEEE 802.11p.
ETSI EN 302 637-2 kinematic rules

CAM shall be triggered in one of two cases:

- The time elapsed since the last CAM generation is equal or larger than $T_{\text{max}} = 1000$ ms.
- The time elapsed since the last CAM generation is equal or larger than $T_{\text{min}} = 100$ ms and any of the following events has occurred:
 1. "Event A": the absolute difference between the current position of the vehicle and its position included in the previous CAM exceeds $d_{\text{min}} = 4$ m;
 2. "Event B": the absolute difference between the current speed and the speed included in the previous CAM exceeds $\nu_{\text{min}} = 0.5$ m/s;
 3. "Event C": the absolute difference between the current direction of the vehicle and the direction included in the previous CAM exceeds 4°.
Reference scenario

- The kinematic parameters of the leading vehicle are modeled via the Intelligent Driver Model
- All the vehicles in the platoon increase or decrease their speed synchronously
Identified problem
CAMs Generation Moments: Synchronization

"Event A": $d_{\text{min}} = 4$ m;
"Event B": $\nu_{\text{min}} = 0.5$ m/s;
Identified problem
CAMs Generation Moments: Synchronization

Constant speed v

Event A

V_1 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_1 V_2 V_3

$Event B$

$V_4,5,6$ V_7 V_8 V_1 V_2 V_3

$t: \Delta v \geq v_{\min}$

T_{min}

d_{min}/v

“Event A”: $d_{\text{min}} = 4 \text{ m}$;

“Event B”: $v_{\text{min}} = 0.5 \text{ m/s}$;
Identified problem
CAMs Generation Moments: Grouping

PDF of the number of groups with m vehicles

- CAMs in one group may collide
- CAMs from different groups never collide
Identified problem
CAMs Generation Moments: Grouping

CAM collision probability

Groups -> Collisions

THANK YOU FOR YOUR ATTENTION!