Effect of Antenna Placement in Vehicle-to-Vehicle Communication Systems

Taimoor Abbas, Johan Kåredal, Fredrik Tufvesson

Department of Electrical and Information Technology
Lund University, Sweden
Background

\(\text{A Position of antenna is expected to have large impact} \)

\(\text{i} \quad \text{Both TX and RX antennas are at same height} \)

\(\text{i} \quad \text{Relatively close to ground level (1-2m above ground)} \)

\(\text{i} \quad \text{Shadowing effects are expected} \)

\(\text{A Measurements in the past have been conducted with same type of antenna arrangements} \)

\(\text{i} \quad \text{Usually roof mounted antenna} \)

\(\text{i} \quad \text{Single exception exists with antenna placed Inside-windscreen} \)
Background

- No measurement results are available to compare the impact of antenna placement on different positions of car.
- Roof antenna is sensitive to roof inclination.
Objective

Å Obtain a **basic understanding** of impact of antenna placement in vehicle-to-vehicle communications

- Antenna positions/Channel Interaction

Å For different antenna positions is there any difference?

- Overall channel gain
- Delay and Doppler spreads
- Visibility of scatterers

Å Find a diversity arrangement with complementary antennas,

- Signal strength can be increased using diversity combining
Measurement Setup

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Sounder</td>
<td>RUSK Lund</td>
</tr>
<tr>
<td>Center Frequency</td>
<td>5.6 GHz</td>
</tr>
<tr>
<td>Measurement Bandwidth</td>
<td>200 MHz</td>
</tr>
<tr>
<td>Number of TX Antennas</td>
<td>4</td>
</tr>
<tr>
<td>Number of RX Antennas</td>
<td>4</td>
</tr>
<tr>
<td>Cars</td>
<td>Volvo V70</td>
</tr>
<tr>
<td>Cars Height</td>
<td>1.47 m</td>
</tr>
<tr>
<td>Number of Snapshots</td>
<td>49,152</td>
</tr>
<tr>
<td>Recording Time</td>
<td>25 s</td>
</tr>
<tr>
<td>Snapshot Time Duration</td>
<td>102.4 μs</td>
</tr>
<tr>
<td>Snapshot Repetition Time</td>
<td>0.51 ms</td>
</tr>
<tr>
<td>Supporting Data</td>
<td>Site Maps, GPS Coordinates Videos</td>
</tr>
</tbody>
</table>
Antennas used are omni-directional.

TX

RX
Measured Traffic Scenarios

Three type of environments were chosen,
- Highway
- Urban
- Rural

Due to their differences in,
- Traffic density
- Roadside environment
- Number of scatterers and Pedestrians
- Houses along the road side

Measurements were conducted in cities of Lund and Malmö, in Sweden
Measured Traffic Scenarios

Highway Measurements:

- Two lane highway
- Direction of travel was separated by 0.5m high wall
- TX/RX speed (80-90km/h)
- Many moving vehicles
- LOS and non-LOS conditions
- Only convoy measurements
Measured Traffic Scenarios

Urban Measurements Lund:
- Width 9-14 m
- Single lane
- Parked cars along street
- Some traffic

Urban Measurements Malmö:
- Width 14-40 m
- Two lanes and turn lanes
- Parked Cars along street
- Busy traffic

Measurements while driving in **Convoy** and in **Opposite** direction
Measured Traffic Scenarios

Rural Measurements:

- Single lane country road
- TX/RX speed (60-70km/h)
- No moving vehicles
- Always LOS conditions
- Measurements while driving in *Convoy* and in *Opposite* direction

Rural measurements can be treated as reference; where no or very few scatterers are around.
Analysis

Å Channel Gain

- We derive PDPs for each link over 10MHz of bandwidth
- To eliminate the effect of small scale fading we average PDPs over several time samples

\[P_h(t, \tau) = \frac{1}{N_{avg}} \sum_{n=0}^{N_{avg}-1} |h(t + n\Delta t, \tau)|^2 \]

- The attenuation due to cables is measured and compensated
- Signals, except ones with power 3dB above noise power, are set to zero
- From this averaged PDP we get channel gain,

\[G_h(t) = \frac{1}{N_\tau} \sum_\tau P_h(t, \tau) \]

Note:
We focus only on the links between same antenna mounts, e.g., roof-roof
Analysis

Å RMS Delay and Doppler spread

- RMS delay-spread is normalized second central moment of APDP given as,

\[
\tau_{RMS} = \sqrt{\frac{\sum_{k=0}^{L-1} \tau_k^2 P_h(\tau_k)}{G_h} - \mu_{RMS}^2}
\]

\[
\mu_{RMS} = \frac{\sum_{k=0}^{L-1} \tau_k P_h(\tau_k)}{G_h}
\]

- Similarly, normalized second central moment of ADDP gives RMS Doppler-spread
Analysis (Example)

APDP

ADDP

RMS delay-Spread

RMS Doppler-Spread
Channel Gain $[\text{dB}]$ as Function of Time $[\text{s}]$

Rural - Convoy

- Roof
- Bumper
- Windscreen
- Left-Side Mirror

Urban - Convoy

- Roof
- Bumper
- Windscreen
- Left-Side Mirror

Leftside-mirror antenna has stronger gain

Roof antenna has stronger gain

Leftside-mirror antenna is sensitive to alignment of cars
Channel Gain [dB] as Function of Time [s]

Rural - Opposite

Urban - Opposite

Bumper antenna has strongest gain before cars cross each other

Roof antenna has strongest gain after cars cross each other
Channel Gain [dB] as Function of Distance [m]

Highway - Convoy

Results from 2 measurement runs are shown with different colors

Signal level falls below noise level most of the time
Channel Gain [dB] as Function of Distance [m]

Urban - Convoy

Urban - Opposite

Results from 4 measurement runs are shown with different colors
Channel Gain [dB] as Function of Distance [m]

Rural - Convoy

Rural - Opposite

Results from 4 measurement runs are shown with different colors
RMS delay-spread and Doppler-spread

- Calculated over full 200MHz of bandwidth
- RMS delay/Doppler spread is affected by antenna placement,
 - Roof; higher gain in backward direction
 - Bumper and Windscreen; higher gain in forward direction
 - Leftside-mirror; higher gain in both forward and backward direction

Even though it is the same type of antenna
Highway Measurements

- Both line-of-sight (LOS) and non-LOS conditions
- Distant scatterers were visible sometimes
- RMS delay and doppler spreads are effected by antenna positions even though we have same type of antennas
Urban Measurements

- Both line-of-sight (LOS) and non-LOS conditions
- Multi-path propagation, relatively large number of scatterers
- RMS delay and doppler spreads are effected by antenna positions even though we have same type of antennas
Rural Measurements

- line-of-sight (LOS)
- Few scatterers
- RMS delay and doppler spreads are affected by antenna positions even though we have the same type of antennas

IEEE VT Society Workshop on Wireless Vehicular Communications, November 9, 2011
Conclusion from above discussion

Â Antennas can be categorized into two complementary groups,
 ï Group 1: Roof and Left-mirror antenna
 ï Group 2: Bumper and Windscreen antenna
Â Diversity arrangements with complementary antennas seems to be a preferred solution
Â Based on overall performance one can choose 2 out of 4, e.g.,
 ï Roof or Left side mirror
 ï Bumper
Diversity Combining (MRC)

Roof Only
Roof+Bumper
Roof+Bumper +WindScreen
All four
Diversity Combining (MRC)
Summary and Conclusions

- The impact of antenna placement on V2V communications is studied and results are presented.
- Four antenna mounts were used; roof, bumper, inside-windscreen and leftside-mirror.
- Bumper and windscreen antennas do not have good coverage in backward direction.
- Roof and left side mirror antennas are sensitive to shadowing caused by the body of TX/RX.
- Results suggest, diversity arrangements with complementary antennas seems to be preferred solution.
 - For example, roof or leftside-mirror together with bumper antenna.
Thank you!