
ABSTRACT 

Licentiate thesis

A Language-Based Approach to Protocol Stack Implementation in 
Embedded Systems

Author: Yan Wang, IDE, Halmstad university

Abstract

Embedded network software, most notoriously communication protocol stacks, becomes increasingly interest-
ing for both research and business along with more and more networked embedded systems. Well-known in-
frastructure protocol stacks are reimplemented on new emerging embedded hardware and software 
architectures, newly designed or revised protocols are implemented in response to new application require-
ments. However, implementing protocol stacks is time-consuming and error-prone due to its complex and per-
formance-critical nature. It is even more so when targeting resource constrained embedded systems: 
implementations have to minimize energy consumption, memory usage etc. Programming efficiency is another 
relevant factor to improve on time-to-market, scalability, maintainability and product evolution. Therefore, it is 
worth researching on how to make protocol stack implementations for embedded systems both easier and 
more likely to be correct within the resource limits.

In the work at hand, we take a language-based approach and aim to facilitate the implementation of protocol 
stacks while realizing performance demands and keeping energy consumption and memory usage within the 
constraints imposed by embedded systems. Language technology in the form of runtime system, type system 
and compiler transformations can then be used to generate efficient implementations. We define a domain-spe-
cific embedded language (DSEL), Implementation of Protocol Stacks (IPS), for declaratively describing over-
layed protocol stacks. In IPS, a high-level packet specification is dually compiled into an internal data 
representation for protocol logic implementation, and packet processing methods which are then integrated into 
the dataflow framework of a protocol overlay specification. IPS then generates highly portable C code for var-
ious architectures from this source. We present the compilation framework for generating packet processing 
and protocol logic code, and a preliminary evaluation of our compiled code.


