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Chapter 1 Introduction 
 
 

In this report, we present a real-time analytical framework and the performance evaluation on our analysis. 
We propose a feasibility analysis of periodic hard real-time traffic in packet-switched networks using First 
Come First Served (FCFS) queuing but no traffic shapers. We choose switched Ethernet as an example to 
present the idea of our analysis and our experimental evaluations in this report.  

The remainder of the report is organized as follows. In Chapter 2, we define the network models, important 
concepts and terminology for real-time analysis. Chapter 3 presents our real-time analysis for isolated 
network elements. Chapter 4 gives end-to-end real-time analysis. Chapter 5 presents the performance 
evaluation of our results by simulation and comparison study and summarizes this report. 
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Chapter 2 Terminology, Assumptions and Notations 
Real-time communication over switched Ethernet network can be quite complex with different network 
architectures, different types of traffics, different time requirements and metrics. This chapter introduces 
network architecture, basic terminology and models, notations, assumptions and relaxations necessary to 
fully understand the remaining chapters in this report. 

2.1 Network Architecture and Notations 
The network architecture is now described in this section. We consider a network with a number of end 
nodes and multiple switches, which enables the structuring of the different network topologies and 
different configurations, thereby supporting different types of applications.  

Network elements 
Our communication network is represented as the interconnection of fundamental building blocks, called 
network elements, as shown in Figure 2.1. We define the following four types of network elements. 

A physical link is a unidirectional transmission link which accepts network traffic from one network 
element and transmits network traffic to another network element at a constant bit rate. According to the 
switched Ethernet standard, a physical link can carry traffic in both directions simultaneously. However, 
for easy understanding of the subsequent real-time analysis, one duplex physical link is decomposed into a 
pair of unidirectional links. In our topology figures, we put an arrow on each edge to represent a 
unidirectional link, and the corresponding unidirectional link in the opposite direction is not shown in the 
figures. 

A switch is a network device which is able to receive network traffic from several input ports and is able to 
decompose input traffic to several output ports. The number of switches in the network is denoted as Nswi, 
the number of input/output ports in switch j is denoted as Nportj and the bit rate of the physical link 
originating from the output port p in switch s is denoted as Rswis,p (bits/s). 

An end node is a network device which is able to transmit network traffic to a single input port of a switch 
and is able to receive network traffic from a single output port of a switch. The number of end nodes in the 
network is denoted as Nnode and the bit rate of the physical link originating from end node k is Rnodek 
(bits/s). 

An output queue is a buffer for an outgoing physical link which stores the traffic being ready to be 
delivered to the outgoing physical link. 
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Figure 2.1. Interconnection of network elements. 
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Network routing 
We assume the end nodes and the switches are connected via point-to-point links. The network operates in 
a packet-switched mode, which means a transmitted data unit being an Ethernet frame. Frames from any 
given user traverse a predetermined fixed route through the network in order to reach their destination.  

We refer to the frame flow transmitted from a source node to a destination node as a logical channel (the 
strict definition will be given in Section 2.2). The network maintains multiple simultaneous logical 
channels and Nch is the total number of logical channels in the network. For the logical channel with index 
i (denoted by iτ ), Sourcei is used to indicate the source node and Desti is used to indicate the destination 

node. 

As illustrated in Figure 2.2, under a fixed routing strategy, once a logical channel iτ  from Sourcei to Desti 

is established, the route, denoted by Routei, is determined. Routei is a sequence of physical links each 
originating from a certain output port in a certain switch and can be expressed as a vector of switch/port 
pairs: 

  ( ) ikikii Nr  k=PortSwitchRoute ,...,1 , ,,= ,                                                                            (2.1) 

where Nri indicates the total number of switches on the route, Switchi,k indicates kth switch on the route and 
Porti,k indicates which output port in Switchi,k being used.  

Note that we have chosen to treat the source node link separately from the switch links, because the 
subsequent real-time analysis is different. The reason will be explained in Chapter 4. 

In this report, we will use the term hop to indicate the intermediate transmission for a logical real-time 

channel. For example, the transmission from the Sourcei to 1,1, , ii PortSwitch  is called the first hop, while 

the transmission from 1,1, , −− kiki PortSwitch to kiki PortSwitch ,, ,  is called the kth hop. More specifically, 

for each hop that is traversed, a frame is transferred from the queue of an incoming link, through the 
controller at a source node or at a switch and to the queue of an outgoing link. 

Traffic handling 
In this section, we describe the traffic handling in switched Ethernet networks.  

Figure 2.3(a) illustrates the traffic handling at a source node. Once a real-time message is released by an 
application, it is immediately put in the output queue in the form of a sequence of Ethernet frames. Several 
applications may release real-time traffic simultaneously, which leads to a burstiness in the output queue. It 
should be noted that the frames belonging to one message might be interrupted by frames belonging to 
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Figure 2.2. The relation between physical connection and logical channel. 
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other real-time channels, therefore they are not always stored continuously in the output queue. Before 
entering the Network Interface Card (NIC), the frames are stored in the output queue, which is a FCFS 
queuing according to standard Ethernet configuration. If the outgoing link is available, the frames stored in 
the NIC will be transmitted. 

The switch is of the store-and-forward type, which can be decomposed into three main components: the 
queuing model, the control logic and the switch fabric. The queuing model refers to the buffering and the 
congestion mechanisms located in the switch, the control logic refers to the decision making process within 
the switch and the switch fabric is the path that data takes to move from one port to another.  

As shown in Figure 2.3(b), when a frame arrives at the switch, the control logic determines the transmit 
port and tries to transmit the frame immediately to the output port. If the port is busy because another 
frame is already under transmission, the frame is stored in the transmit port’s queue, which is a FCFS 
queue according to the Ethernet standard.  

Although our goal is to support hard real-time traffic, we still allow other traffic classes in the network, e.g., 
best effort traffic and non real-time traffic. To prioritize different traffic classes and minimize the 
interference with other traffic when transmitting periodic time-critical messages, the traffic differentiation 
mechanism introduced by the IEEE 802.1D/Q standards is used in our proposal. 

The IEEE 802.1D queuing feature [IEEE 1998] [IEEE 2003] enables Layer 2 to set priorities to traffic. The 
content of an IEEE 802.1D tagged Ethernet frame is shown in Figure  2.4(a). The IEEE 802.1D 
prioritization works at the Medium Access Control (MAC) framing layer. If the value of the Tag Protocol 
Identifier (TPID) field in an Ethernet frame is equal to 8100, this frame carries the tag IEEE 802.1D/Q. 
The Tag Control Information (TCI) field is the 802.1D header, including a three-bit field for setting 
priorities, allowing packets to be grouped into various traffic classes, a one-bit field for the Canonical 
Format Indicator (CFI), and a 12-bit Virtual Local Area Network (VLAN) ID. The latter two fields are not 
used in our work. By adding the 802.1D header to the frames, traffic is simply classified and put into 
queues with different priorities. There could be up to eight priority queues according to the standard, while 
we assume a minimum of three. 

In the example shown in Figure  2.4(b), there are three priority queues for each output port in a switch. The 
hard real-time (HRT) frames are put into the hard real-time traffic queue, which has the highest priority 
among all traffic classes, while soft real-time (SRT) frames are put into the soft real-time queue with a 
lower priority than the hard real-time queue. Outgoing non-real-time (NRT) traffic from the end node is 
treated as lowest priority. In the same way, there are three priority queues for three traffic classes in each 
source node. 

Since our real-time analysis in this report aims for providing guarantees for hard real-time traffic, we only 
illustrate HRT queues in most of the topology figures. 
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Figure 2.3. Output queues and traffic handling. (a) in an end node. (b) in a switch. 
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The network related parameters are summarized in Table 2.1. 

2.2 Terminology, Models and Notations 

The basic terminology and model for real-time analysis is presented in this section. The following 
definitions are grouped into three classes: channel level, link level and schedulability level. Other 
terminology will be introduced in later chapters when it applies to a particular algorithm or system 
configuration. 

Channel Level 
The logical channel concept, used for traffic modeling, has been introduced in Section 2.1. The strict 
definitions of the traffic model and properties are given here. 

Definition 2.1 A logical real-time channel (with index i), τi, is a virtual unidirectional connection from the 
source node, Sourcei, to the destination node, Desti. The channel is characterized by the maximum pure 
data traffic volume (Capi) given by the application, the maximum practical traffic volume given by 
network implementation (Ci) including data and Ethernet header, and a set of time properties. Both Capi 
and Ci are expressed in bits. 

The derivation from Capi to Ci is given by Equation 2.2:  

Name Definition 

Nnode the number of end nodes in the network. 
Nswi the number of switches in the network. 
Nch the number of logical channels in the network. 
Nportj the number of ports in switch j. 
Rnodek the rate of the physical link from source node k (bits/s). 
Rswis,p the rate of the physical link at output port p in switch s (bits/s). 
Sourcei  the source node of logical real-time channel i. 
Desti the destination node of logical real-time channel i. 
Nri the number of switch ports for the packets belonging to channel i 

Routei the route from Sourcei to Desti, ( ) ikikii Nr  k=PortSwitchRoute ,...,1 , ,,= . 

Switchi,k kth switch that the messages belonging to real-time channel i go through. 
Porti,k   Output port in Switchi,k is used for the logical real-time channel i. 

Table 2.1. Notations and definitions for the network configuration.  
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Figure 2.4 Traffic differentiation. (a) IEEE 802.1D/Q extended Ethernet frame. (b) Priority 
queuing. 



 6 

            
( )( ) ( )

( )

( )
















=








<<+








≥++








=

;0mod if,

;mod0 if,72

;mod f,mod

maxd
maxd

mindmaxd
maxd

mindmaxdmaxd
maxd

TCapT
T

Cap

TTCapT
T

Cap

TTCapiTTCapT
T

Cap

C

ief
i

ief
i

ihief
i

i

,                                    (2.2) 

where Tef is the length of a full-sized Ethernet frame including the inter-frame gap, Th is the length of the 
Ethernet frame header including the inter-frame gap, Tmind is the minimum length of the data field in an 
Ethernet frame without pad field and Tmaxd is the length of the data field in a full-sized Ethernet frame. 
These notations for traffic volume calculation are all expressed in bits and explained in Table 2.2. 

Definition 2.2 A message is a collection of data being communicated over a real-time channel. The 
maximum size of the message equals to Ci. 

As explained in Section 2.1, the data entered into the network by the applications is divided into frames; 
therefore, a message can be viewed as a sequence of frames. In other words, the minimum unit for data 
transmission over switched Ethernet is an Ethernet frame, while the basic unit used in the real-time 
analysis is a message.  

Definition 2.3 The message release time, r i, for real-time channel τi, is the time instant that τi releases its 
first messages. 

Definition 2.4 A periodic logical real-time channel τi is one which releases messages regularly with a 
constant interval called the period, Tperiod,i (in s). A periodic logical real-time channel will be called real-
time channel in the rest of the report. 

Definition 2.5 The end-to-end relative deadline, Tdl,i (in s), for real-time channel τi, is the maximum 
allowed time interval between the release of a message of τi at the source node and the arrival of the 
message at the destination node for that channel.  

Definition 2.6 The end-to-end absolute deadline, Tabsdl,i,j, for the jth message of τi, is the time instant by 
which the message must arrive at its destination node. In other words, Tabsdl,i,j = ri + Tperiod,i · (j − 1) + Tdl,i. 

Definition 2.7 The relative deadline, Tsrcdl,i, (in s) for real-time channel τi at the source node, is the 
maximum allowed time interval between the release of a message at the source node and the arrival of the 
message at the next hop. 

Definition 2.8 The absolute deadline, Tabssrcdl,i,j, (in s) for the jth message of τi at the source node, is a time 
instant by which the message must arrive at the next hop. In other words, Tabssrcdl,i,j = ri + Tperiod,i · (j − 1) + 
Tsrcdl,i. 

Definition 2.9 A synchronous pattern is a scenario in which a set of real-time channels release their first 
messages at the same time (usually considered time zero).  

The notations related to real-time channels are listed in Table 2.3. 

Name Definition 
Value 

(without IP 
or UDP) 

Value 
(incl. IP and 

UDP) 

Tef 
the length of a full-sized Ethernet frame including inter-frame 
gap 

1538 bits 1538 bits 

Th the length of the header in an Ethernet frame 46 bits 74 bits 

Tmind 
the minimum length of the data field in the Ethernet frame 
without pad field 

38 bits 10 bits 

Tmaxd the length of the data field in a full-sized Ethernet frame 1492 bits 1464 bits 

Table 2.2. Notations for traffic volume calculation. 
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Link level 
In this report, we target for hard real-time communication, which means to guarantee that the messages are 
delivered within their deadlines. In a packet-switched network, a message that starts from a source node 
passes through a series of switch/port pairs on the way and ends its journey in a destination node. As the 
message travels from one node to another, it experiences different types of delays along the path, which are 
therefore introduced as follows. 

Definition 2.10 The worst-case delay, Tsdelay,i (in s) at the source node of real-time channel τi, is the longest 
time that passes from the message release time at the source node to the last bit of the message leaving the 
outgoing physical link.  

Definition 2.11 The worst-case delay, Ti,k (in s), at the switch’s output port 
kiki PortSwitch ,, ,  of real-time 

channel τi, is the longest time that passes from the time instance when the message being put in the output 
port queue to the last bit of the message leaving the outgoing physical link from that output port.  

Definition 2.12 The worst-case delay, Dnodek (in s) at source node k, is the worst-case delay for any 
channel originating from node k.  

Definition 2.13 The worst-case delay, Dports,p (in s) at output port p of switch s, is the worst-case delay for 
any channel traversing the outgoing link from that port. 

Definition 2.14 The buffer size, BNk (in bits) at source node k, is the maximum buffer population for hard 
real-time traffic at source node k.  

Definition 2.15 The buffer size, BSs,p (in bits) at output port p of switch s, is the maximum buffer population 
for hard real-time traffic at that port.  

Definitions 2.12-2.15 will be explained further in Chapter 4. 

Definition 2.16 The end-to-end worst-case delay, Te2edelay,i (in s) of real-time channel τi, is the longest 
possible time between the time instance when the message being released by the source node and the last 
bit of the message arriving at the destination node. 

Definition 2.17 A tight worst-case delay is the accurately predicted worst-case delay without any 
overestimation. 

The end-to-end delay includes queuing delays, transmission delays and propagation delays on the physical 
link. The transmission delay is the amount of time required to transmit all the bits of a message onto the 
link. Once a bit is pushed onto the link, it needs to propagate to the next hop. The propagation delay, Tprop 
(in s) is the amount of time required to propagate over a physical link, which can be easily calculated and 
added as a constant in the delay analysis.  

Name Definition 

τi Logical real-time channel with index i. 
Sourcei  The source node of  τi. 
Desti The destination node of τi. 
Tperiod,i The period of data generation belonging to τi (s). 
Capi The amount of pure data  generated by the application per period belonging to τi (bits). 
Ci The amount of traffic, including data and header, per period for τi (bits). 
r i The time instant when τi releases its first message.  
Tdl,i The end-to-end relative deadline of τi specified by the application (s). 
Tabsdl,i,j, The end-to-end absolute deadline for the jth message of τi. 
Tsrcdl,i The relative deadline of τi at the source node. 
Tabssrcdl,i,j The absolute deadline for the jth message of τi at the source node. 

Table 2.3. Notations and definitions for the real-time channels. 
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To determine whether real-time channels satisfy their timing requirements, it is necessary to find out 
whether the time constraints are met even in the worst-case situation. The following definitions are formed 
for the worst-case delay analysis. 

Definition 2.18 The critical instant for real-time channel τi, is defined as the message release pattern of all 
the real-time channels that leads to the worst-case delay of τi.  

Definition 2.19 The source  link utilization, kU , for a set of real-time channels { }nτττΓ ,..., 21=  

originating from source node k is the average fraction of time that the outgoing link is busy, that is, 

∑
=

=
n

i iperiodk

i
k TRnode

C
U

1 ,

. 

Definition 2.20 The switch link utilization, psU , , for a set of real-time channels { }nτττΓ ,..., 21=  

traversing the switch/port <s, p> is the average fraction of time that the outgoing link is busy, that is, 

∑
=

=
n
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i
ps TRswi

C
U

1 ,,
, . 

Definition 2.21 The cumulative workload, ( )21,ttWk  (in bits), for a set of real-time channels 

{ }nτττΓ ,..., 21=  originating from source node k is the sum of the traffic volume of messages released by 

the real-time channels during time interval [ ) ( )irtitt ≤∀ 121 ,,, , that is 
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Definition 2.22 The cumulative traffic volume, ( )21,ttTraffick  (in bits), for a set of real-time channels 

{ }nτττΓ ,..., 21=  originating from source node k is the sum of the traffic volume delivered from node k to 

the second hop during time interval [ )21,tt . 

Definition 2.23 Busy-period is an interval of continuous link utilization time.  

Definition 2.24 Idle-period is an interval of link idle time. Note that a link idle period can be of zero length, 
if the last pending message completes at the same time a new message is released. 

Definition 2.25 The synchronous busy-period is the first busy period in the schedule of a synchronous 
periodic channel set.  

Definition 2.26 The length of the synchronous busy-period, ( )ΓBP  (in s), is the length of the synchronous 

busy-period of the channel set { }nτττΓ ,..., 21=  allocated to one physical link (with link rate R expressed 

in bit/s), which is calculated by the following iterative computation 
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The notations for delay and buffer bound analysis are summarized in Table 2.4. 

Schedulability level 
The time constraints are guaranteed by addition of real-time channels. To establish real-time channels, 
schedulability analysis is essential. The relevant concepts are defined as follows. 

Definition 2.26 A real-time channel τi is said to be schedulable if its end-to-end worst-case delay does not 
exceed its deadline, that is, .,,2 idliedelaye TT ≤  

Definition 2.27 A feasible link is one for which the set of real-time channels allocated to it are schedulable.  

Definition 2.28 A feasible network system is one for which every link is feasible. 

2.3 Assumptions and relaxations   

A key issue in real-time analysis involves the underlying assumptions made. In the subsequent analysis, the 
following assumptions are made: 

• A1: The real-time channels are independent in that there is neither shared resources other than the 
transmission link between them, nor relative dependencies or constraints on release times or 
completion times. 

• A2: There are no overhead costs for performing switching functions, e.g., destination address look-up, 
fabric set-up time, and queuing operations (sorting, inserting and removing). Such delays are assumed 
as zero in our analysis. 

• A3. We assume deadlock free routing, meaning that the network ensures not only that the route for 
each logical real-time channel is individually loop free, but also that the routes for all logical real-time 
channels do not interact in a way that would create deadlocks. Classical deadlock-free routing 
algorithms impose an artificial order for visiting the network nodes, for example, forming a spanning 
tree. 

Name Definition 
Tsdelay,i The worst-case delay at the source node of logical real-time channel i (s). 
Dnodek  The worst-case delay for any channel originating from source node k ( s) 

Ti,k 
The worst-case delay of logical real-time channel i at the output port in its kth switch 

kiki PortSwitch ,, ,
 (s). 

Dports,p The worst-case delay  at output port p of switch s ps,  (s). 

BNk  The maximum buffer population  for hard real-time traffic at source node k (bits) 
BSs,p  The maximum buffer population  for hard real-time traffic at output port p of switch s (bits) 
Te2edelay,i The end-to-end worst-case delay of real-time channel τi. 

Tprop 
The maximum propagation delay over a link between two network elements (end-node or 
the switch) (s).   

( )ΓHP  { }niTlcmHP iperiod ,...,1, == (s). 

kU  Utilization of the link from source node. 

psU ,  Utilization of the link from  switch/port <s, p>. 

( )21,ttWk  
The sum of the traffic volumes of messages released by the real-time channels originating 

from source node k during time interval [ )21,tt . 

( )21,ttTraffick
 

The sum of the traffic volumes of delivered messages from source node k to the second hop 
during time interval [ )21,tt .  

( )ΓBP  The length of the synchronous busy period (s).    

Table 2.4. Notations and definitions for delay and buffer bound analysis 
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One goal of this report is to achieve realistic real-time analysis, with as adequate models of the network 
and its traffic as possible. For this reason, many assumptions used in other related work will be relaxed in 
this report. The relaxations made in this report are: 

• NA1: The deadline for a real-time channel is not related to its period. This means that deadlines may 
be shorter than periods or that pipelining of messages may occur. Note that many real-time analysis 
results in the literature are only developed for the case that the deadline is equal to the period. In fact, 
in actual systems it may be useful to specify deadlines shorter than periods, in order to improve the 
responsiveness of a given real-time channel, or to enforce a minimum time gap between two 
consecutive messages of the same real-time channel. 

• NA2: Real-time channels do not necessarily release their first messages according to the synchronous 
pattern (the scenario in which messages are released at the same time).  In fact, any release pattern can 
be assumed.  

• NA3: One message is a sequence of Ethernet frames possibly varying in size, which is a strong 
motivation to release fix-sized frames assumption. However, previous research results are limited by 
assuming fix-sized frames.  

• NA4: Our analysis supports both switches with homogeneous bit-rate ports and switches with different 
bit-rate ports. Using links with different bit rates is a promising alternative to reduce bottlenecks, e.g., 
between the switch and the master node in a master-slave automation system. However, most related 
work only investigates the homogeneous case.  

2.4   Summary of Notations         
For ease of reference later in this report, the notations defined in this chapter are summarized in Table 2.5. 
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Network parameters  
Name Definition 
Nnode the number of end nodes in the network. 
Nswi the number of switches in the network. 
Nportj the number of ports in switch j. 

R the rate of the physical link (bits/s). 

Rnodek the rate of the physical link from source node k (bits/s).  

Rswis,p the rate of the physical link at output port p in switch s (bits/s). 
Logical real-time channel parameters 

Name Definition 
Nchs The number of logical real-time channels in the network. 
τi Logical real-time channel with index i. 
Sourcei  the source node of τi . 
Desti the destination node of τi . 
Tperiod,i the period of data generation belonging to τi (s). 
Capi the amount of pure data  generated by the application per period belonging to τi (bits). 
Ci The amount of traffic, including data and header, per period for τi (bits). 
Tdl,i the end-to-end relative  deadline of τi (s) 
Tabsdl,i,j, The end-to-end absolute deadline for the  jth message of τi 
Tsrcdl,i The relative deadline of τi at the source node 
Tabssrcdl,i,j The absolute deadline for the  jth message of τi at the source node 

Routei the route from Sourcei to Desti , ( ) ikikii Nr  k=PortSwitchRoute ,...,1 , ,,=  

Switchi,k kth switch that the messages belonging to real-time channel i go through 

Porti,k   Output port in Switchi,k  is used for the logical real-time channel i. 

Delay parameters 
Name Definition 

Tsdelay,i the worst-case delay at the source node of logical real-time channel i (s). 

Dnodek  The worst-case delay for any channel originating from source node k ( s) 

Ti,k The worst-case delay of logical real-time channel i at the output port in its kth switch 
kiki PortSwitch ,, ,  (s). 

Tprop The maximum propagation delay over a link between two network elements (end-node or the switch) (s).   

Dports,p The worst-case delay at output port p of switch s ps,  (s). 

BNk  The maximum buffer population for hard real-time traffic at source node k (bits) 
BSs,p  The maximum buffer population for hard real-time traffic at output port p of switch s (bits) 
Te2edelay,i The end-to-end worst-case delay of real-time channel τi . 

( )ΓHP  ( ) { }niTlcmτHP iperiod ,...,1, == (s).    

kU
 Utilization of the link from source node. 

psU ,  
Utilization of the link from switch/port <s, p>. 

( )21,ttWk

 

The sum of the traffic volume of messages released by the real-time channels originating from source node k during time 

interval [ )21,tt . 

( 1,ttTraffick

 
The sum of the traffic volume of delivered messages from source node k to the second hop during time interval [ )21,tt .  

( )ΓBP  The length of the synchronous busy period (s).    

Notations and values for traffic volume calculation 

Name Definition 
Value (without IP 

or UDP) 
Value 

(incl. IP and UDP) 
Tef the length of a full-sized Ethernet frame including inter-frame gap 1538 bits 1538 bits 
Th the length of the header in an Ethernet frame 46 bits 74 bits 
Tmind the minimum length of the data field in the Ethernet frame without pad field 38 bits 10 bits 
Tmaxd the length of the data field in a full-sized Ethernet frame 1492 bits 1464 bits 

Table 2.5. Notations for real-time analysis 
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Chapter 3 Real-time Analysis for Isolated Network Elements 
Estimation of worst-case delay at every hop is of critical importance to estimate the end-to-end worst-case 
delay. This chapter deals with all the common real-time analysis for the isolated fundamental building 
blocks, called network elements. The results obtained in this chapter will be useful for the subsequent real-
time analysis for the whole communication network, as given in the following chapters.  

3.1 Introduction   

As described in Chapter 2, we represent a communication network as the interconnection of different 
network elements. The network operates in packet-switched mode and messages released by a real-time 
channel traverse a predefined sequence of hops. Performing real-time analysis on multi-hop packet-
switched networks is complicated because of the existence of burstiness and jitter. 

Burstiness, which is the variance in traffic rate, is caused by the difference between the bit rate of the 
physical link and the injection rate from a traffic source (e.g., an application or the previous hop). The 
physical links transmit frames one by one at a constant rate, while the applications release frames in bursts. 
This mismatch results in burstiness and queuing.  

Jitter, a natural result of queuing, is the variation of a time metric with respect to some reference metric. 
For example, the variation in periodicity is called release jitter and the delay variation is called delay jitter.  

We will first use several examples to illustrate our observations. For easy understanding, in the following 
examples, we only give values to the parameters without specifying the units for them. All the parameters 
can be viewed as being expressed in the number of full-sized Ethernet frames including the inter-frame gap. 

Figure 3.1 illustrates the traffic characteristics from the applications to a source node. Consider two 

applications at a source node, each requesting one real-time channel. Let 1τ  with 3,10 11, == CTperiod , 

and 2τ  with 2,5 22, == CTperiod . The following observations can be seen from this example.  

• Burstiness. Once a message is released by the application, it is split into a number of frames and put in 
the output queue immediately, which leads to a burstiness in the output queue at the message release 
time. In this example, both 1τ and 2τ  release their first messages at time instant 0, so five Ethernet 
frames are injected into the output queue at time 0, as shown in Figure 3.1. Similarly, another 
burstiness occurs at time instant 5, when 2τ  release its second message. 

Jitter of
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Node
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0                                   10                time

Message released by applications
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0               5                  10                time

2τ

Outgoing frame flow

0                  5      7      10               15   time

burstiness
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Figure 3.1. Traffic injection from applications to the source node output queue. 
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• Jitter. According to the standard Ethernet configuration, frames are sorted in an FCFS-queue. In some 
situation, there might be multiple simultaneous arrivals of multiple frames from different applications. 
This could mean that the frames belonging to one message might not be stored continuously in the 
queue due to the interference with another channel. Consequently, although the messages belonging to 
the same real-time channel are released with a fixed interval of time by the application, the messages 
might not leave the source node with a constant inter-arrival time. For instance, 2τ  releases its message 

at the application level with a fixed interval, of 5. However, due to the interference of 1τ , the first 

message of 2τ  leaves the source node at time instant 3, the second message leaves at time instance 7, 
the third message leaves at time instance 15 and the fourth leaves at time instance 17. Consequently, 
the output interval can go from 2 up to 8. 

Next, we will investigate the transmission characteristics at a switch. First, we study the simple case in 
which a switch only receives real-time traffic from source nodes. This case exists mainly in a network with 
a star topology, where each node is connected to other nodes via the switch. Figure 3.2 illustrates a 
comparison between the transmission characteristics at a source node and at such a switch/port.  

In Figure 3.2(a), we use the same example as Figure 3.1 to show how two channels at a source node 
interfere and lead to burstiness and jitter. Figure 3.2(b) illustrates a switch’s output port queue. We again 
use the same channels, but from different source nodes. It should be noted that the propagation delays are 
not included here. We will add them afterwards when we analyze end-to-end worst case delay in Chapter 4. 
Our observations are: 

• Incoming traffic is less bursty in the switch. At time instant 0, five frames arrive at the source node’s 
output queue, while only two frames arrive at the output queue in the switch after one time slot 
because of the limited bit rate of the incoming physical links. In contrast, the output queue at a source 
node receives frame flows from multiple simultaneous applications without being limited by the bit 
rate. In other words, each frame flow to the switch is shaped by the physical link, while there is no 
such transmission smoothing functionality from the applications to the source node queue. It is worth 
noting that this observation is crucial to avoid over-estimation of the worst-case delay at the 
intermediate switches. 

• Jitter still exists due to the interference among the real-time channels and the FCFS sorting policy. This 
is shown in Figure 3.3. Due to the interference of 1τ , the first message of 2τ  leaves the switch output 
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Figure 3.2. Transmission characteristics comparison between a source node and a switch 
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queue at time instant 3, the second message leaves at time instance 8, the third message leaves at time 
instance 15 and the fourth leaves at time instance 18. Consequently, the output interval can go from 3 
up to 7. 

In fact, with the knowledge of the traffic model at the source nodes, it is possible to model the traffic at the 
second hop. However, it is much more difficult to achieve accurate models of the traffic flows after the 
second hop (in networks with multiple switches) because of the difficulties in predicting aggregated jitter 
introduced by the previous hops.  

Based on the above observations, we can now conclude that the periodicity are only respected when the 
applications release messages at the source node, while the period of the messages varies at the 
intermediate hops, depending upon the arrival pattern of messages from other channels. Recall that we 
have made the decision of not using regulators, since this is not implemented in standard Ethernet switches. 
Thus, we face the challenge of predicting the interference from other real-time channels and re-
characterizing the traffic arrival pattern in the intermediate network elements.  

This challenge motivates us to develop three separate analytical schemes for the two types of network 
elements:  

• Case 1: Source node receiving real-time traffic from the applications. 

• Case 2: Switch only receiving real-time traffic from source nodes.  

• Case 3: Switch receiving traffic from source nodes as well as other switches.  

The remainder of this chapter is organized as follows. Section 3.2 presents the worst-case delay analysis 
for Case 1. Section 3.3 gives the worst-case delay analysis for Case 2. Section 3.4 describes the worst-case 
delay analysis for Case 3. Section 3.5 summarizes the chapter. 

3.2  Case 1: Source node receiving traffic from applications 

In this section, we derive the worst-case delay at a source node. 

To analyze the schedulability for a set of real-time channels, it is important to find the critical instant (the 
message release pattern maximizing the delay of a channel). Hence, if the channel does not miss its 
deadline in the case of the critical instant, it will not miss the deadline in any other case. Our proof strategy 
is as follows: first to find the critical instant and then proceed to analyze the worst-case delay.  
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Figure 3.3. Traffic injection and introduced jitter  from the source nodes to the second hop. 
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In Lemma 3.1, we will prove that this fact also holds for FCFS scheduling. The proof of Lemma 3.1 is 
inspired by similar arguments as used for deadline-driven scheduling [Baruah et al. 1990] [Spuri 1996]. 
However, regarding FCFS, a new arriving frame has to wait for the completion of the transmission of all 
the remaining frames in queue. Therefore, the delay of it corresponds to the amount of traffic in the output 
queue at the arrival time, called queuing population and expressed in bits. Obviously, the worst-case delay 
corresponds to the maximum queuing population.  

Our proof idea of Lemma 3.1 is as follows. We will prove that given any message release pattern, the peak 
value of the queuing population is not higher than that of the synchronous pattern.  
 
Lemma 3.1. Assume that FCFS queuing is used to schedule a set of real-time channels Γ={ τ1, τ2, .., τn} on 
the physical link originating from the end node k. Then the critical instant for any channel τi is the 
synchronous pattern of Γ. 

Proof.  Given any message release pattern, assume the peak value of the queuing population occurs at time 
instant t (t ≥0). Obviously, t is in a busy-period. Let t’  be the end of the last link idle period before t (0 ≤ t´≤ 
t), as illustrated in Figure 3.4. 

If the given message release pattern is not the synchronous pattern, t´ must still be the message release time 
of at least one real-time channel. If we shift the messages released by all the other real-time channels after 
t´ up to t´ keeping their periodicity after the shifting, then the cumulative workload during the time interval 
[t´, t) will not be decreased. Consequently, the queuing population at any time instant during [t´, t) will not 
be decreased. Also, the peak value of the queuing population after the shift will not be less than the 
previous peak value, and it will occur at or before t.  

Since there was no link idle time during the time interval [t´, t), there will be no link idle time during the 
time interval [t´, t) after the shifting, due to the non-decreased workload.  

If we now consider the message release pattern from time t’ on, we obtain the synchronous pattern and the 
worst-case situation (maximum queuing population) occurs during the first link busy period.      
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

Lemma 3.1 suggests studying the synchronous pattern of an FCFS-scheduled channel set in the first busy-
period.  

Therefore, in Theorem 3.1, we will analyze the worst-case delay and prove that the achieved worst-case 
delay is tight (the minimum bound without any overestimation).  

Our proof idea of Theorem 3.1 is as follows. First, we calculate the queuing population, viewed as a 
function of time, QP(t), which is the cumulative workload arriving before t, excluding the amount of traffic 
being removed before t. Recall that to find the worst-case delay, we need to find the maximum queuing 
population. Thus, in the next step, we find max{QP(t), t ≥ 0}. Finally, we show that the obtained worst-case 
delay is also tight. 

 

Figure 3.4. Timing figures used in the proof of Lemma 3.1. 
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Theorem 3.1 Assume FCFS-queuing is used for a set of real-time channels Γ={ τ1, τ2, .., τn}  on the same 

source node k. If %100≤kU , then [ ]niRnodeCT k

n

j
jisdelay ,1for holds/

1
, ∈∀=∑

=
. In addition, the worst-case 

delay occurs at the beginning of the busy-period. 

Proof. According to Lemma 3.1, the critical instant is the synchronous pattern. Without loss of generality, 
assume all real-time channels start at time 0. 

For ( )  ,0, ΓBPtt ≤≤∀  the cumulative workload of messages that arrives before t is: 

  ( ) .1,0 
1 ,

j

n

j jperiod
k C

T

t
tW ∑

= 
























+=                                                  (3.1) 

Since %100≤kU  holds, we have:  
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Since t is in the first busy period, tRnodek ⋅  bits are transmitted (removed from the queue). Consequently, 
according to Equation 3.1 and Equation 3.4, the amount of bits remaining to be transmitted at time t, QP(t), 
is: 
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This shows that the maximum queuing population is: 

         { } ∑
=
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n

j
iCttQP

1

0),(max                                (3.6) 

Recall that the frame at the end of the queue has to wait for the transmission of all the remaining frames in 
the queue. With the maximum queuing population, the worst-case delay, isdelayT , , is calculated as: 
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In order to show that isdelayT ,  is the tight worst-case bound without any overestimation, according to 

Equation 3.5, we calculate the queuing population at time 0, )0(QP : 
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Equation 3.8 indicates: 

{ } { }0),(sup)0(0),(max ≥==≥ ttQPQPttQP ,                        (3.9) 

which proves that the maximum queuing population does occur, and it occurs at time 0 (the beginning of 
the first busy-period according to our assumptions). In other words, the tight bound for the worst-case 

delay is i

n

j
j RnodeC /

1
∑

=

. 

This concludes the proof.                                                                                                   □ 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

It is worth noting that the worst-case delay will be the same for all real-time channels originating from the 
same source node due to FCFS. That is: 

            kSourceSourceifDnodeTT jikjsdelayisdelay ==== ,, ,                      (3.10) 

where Dnodek is the worst-case delay at source node k. According to Theorem 3.1, we have: 

k
kSource

jk RnodeCDnode

j

/∑
=

= .                                     (3.11) 

By taking this into account, instead of calculating the worst-case delay for each real-time channel, the 
worst-case delay calculation for the source nodes can be improved by simply calculating Dnodek for each 
source node.  

Recall the correspondence between the worst-case delay and the maximum queuing population. Using 
Theorem 3.1, we are now able to calculate the maximum required buffer size in the source node. 

Corollary 3.1 Assume that FCFS queuing is used for a set of real-time channels Γ={ τ1, τ2, .., τn} 
in the same source node k. If the link utilization %100

1 ,

≤= ∑
=

n

j kjperiod

j
k RnodeT

C
UNode , then the maximum 

required buffer size at source node k is ∑
=

=
kSource

jk

j

CBN . 

Proof.  See Equation 3.6 in Theorem 3.1.                                 □ 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

3.3  Case 2: Switch only receiving traffic from source nodes 

In this section, we investigate the worst-case delay for the second hop, in the case where a switch port only 
receives traffic from source nodes.  

Recall that the real-time analysis of a switch is different from that of a source node due to the traffic 
shaping nature of the incoming physical link and the introduced jitter caused by the interference of other 
channels (as illustrated in Figure 3.2 and 3.3). Nevertheless, the idea of worst-case delay analysis is still to 
first find the critical instant and then to calculate the worst-case delay. This time we use Lemma 3.2, 
Theorem 3.2 and Algorithm 3.1. 
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It should be noted that the propagation delays are not included in the worst-case delay analysis for Case 2 
and Case 3. We will add them afterwards when we analyze end-to-end worst-case delays in Chapter 4. 

In contrast to the source node case, the worst-case delay at the switch output port does not always occur at 
the beginning of the first busy-period. The reason is that the burstiness of the incoming traffic is limited by 
the incoming physical link, as illustrated in Figure 3.2. In Lemma 3.2, we will prove that the cumulative 
traffic from source node k to the second hop under the synchronous pattern at that source node is not less 
than that under any other release pattern. Then, in Theorem 3.2, we will prove that the critical instant at the 
second hop is still a consequence of the synchronous pattern at the source nodes by looking at the 
aggregated incoming traffic from all the source nodes.  

Our proof idea of Lemma 3.2 is as follows. We analyze the cumulative traffic volume from a source node to 
the second hop during a certain time interval. It should be noted that the cumulative traffic volume is the 
amount of traffic that has been delivered from a source node to the second hop during a certain time 
interval, and it affects the workload at the second hop. It is proven that the cumulative outgoing traffic 
volume under the synchronous pattern is not less than any other message release pattern by considering 
two cases.  

Lemma 3.2 Assume that FCFS queuing is used to schedule a set of real-time channels Γk={ τi: 1≤ i ≤nk} 
originating from source node k. Also, assume that the outgoing link from the second hop is busy at time 
instant t and t’  is the end of the last link idle period before t (0 ≤ t´ ≤ t). Then, the volume of cumulative 
traffic from source node k to the second hop during [t´, t) under the synchronous pattern (the first messages 
are released at time t´ at node k) is not less than that under any other release pattern (0 ≤ t´ ≤ t). 

Proof. Given any message release pattern, without loss of generality, assume that τi (1≤ i ≤nk) release 
messages at t´  +  ∆r i, (∆r i ≥ 0), as illustrated in Figure 3.5.  

According to Definition 2.21, the cumulative workload for the incoming link from node k during [t´, t), 
Wk(t´, t), is derived as: 
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Let <s, p> represent the second hop, the output port p at switch s, and let Traffick(t´, t) represent the volume 
of cumulative traffic from source node k to <s, p> during [t´, t). We will now observe Traffick(t´, t) by 
considering two cases: These two cases are illustrated in Figure 3.5(a) and Figure 3.5 (b), respectively. The 
fist one represents the case in which the link from k is idle at time instant t. The second one represents the 
case in which the link from k is busy at time instant t. It should be noted that the incoming link from node k 
to switch s may be idle at some time instants when the outgoing link from <s, p> is busy during [t´, t), 
because there can be traffic from other incoming links. Let tidle represent the accumulated length of all the 
link idle periods during [t´, t). 

Case I. As illustrated in Figure 3.6 (a), in this case, the link from node k is idle at time instant t. Hence, 
the amount of link capacity during [t´, t) is not used 100%, that is,  

 

Figure 3.5. Timing figures used in the proofs of Lemma 3.2.  
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( ) )'()'(,' ttRnodetttRnodettTraffic kidlekk −≤−−= .                      (3.14) 

Also, the link being idle at time instant t indicates that the cumulative workload during [t´, t) has 
been delivered to the next hop, that is: 

( ) ( )ttWttTraffic kk ,',' = .                       (3.15) 

Case II. As illustrated in Figure 3.6 (b), in this case, the link from k is busy at time instant t. Note that the 
link from node k may have one or several idle periods during [t´, t). Thus, we still have:  

( ) )'()'(,' ttRnodetttRnodettTraffic kidlekk −≤−−= ,                      (3.16) 

And the remaining traffic at node k indicates: 

( ) ( )ttWttTraffic kk ,',' ≤ .                       (3.17) 

If we shift earlier the messages released after t´ by all the real-time channels Γk={ τi: 1≤ i ≤nk}  to t´ keeping 
their periodicity, the workload of the incoming link originating from node k after the shifting, Wk(t´, t), will 
not be decreased, that is: 

( ) ( ).,',''' ttWttW kk ≥                         (3.18) 

Let Traffick(t´, t) represent the amount of cumulative traffic from source node k to <s, p> during [t´, t) after 
the shifting. Now, we will observe Traffick(t´, t) and prove that Traffic ḱ(t´, t) ≥ Traffick(t´, t) holds for each 
of the cases. Let t`idle represent the cumulated length of all the link idle periods during [t´, t) after the 
shifting. 

The analysis of Case I. a), If the link is still idle at time t after the shifting, then the workload during [t´, 
t) has been consumed. That is, Traffic ḱ(t´, t) = W ḱ(t´, t). According to Equation 
3.14 and Equation 3.17, we have Traffic ḱ(t´, t) ≥ Traffick(t´, t).  

 

(a) 

 

(b) 

Figure 3.6. Illustration of workload and outgoing traffic from node k. (a) Case I. (b) Case II.  
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b), Otherwise, if the link is busy at time t after the shifting, there may still be 
link idle time during [t´, t). Therefore, we have:  

( ) )'()´'(,'' ttRnodetttRnodettTraffic kidlekk −≤−−= .                 (3.19) 

According to Equation 3.17, the non-decreased workload after the shifting 
indicates a non-increased length of idle time, that is: 

idleidle tt ≤' .                   (3.20) 

Consequently, Traffic ḱ(t´, t) ≥ Traffick(t´, t) holds. 

The analysis of Case II. a), If the link is idle at time t after the shifting, then the workload during [t´, t) 
has been consumed. That is, Traffic ḱ(t´, t) = W ḱ(t´, t). Consequently, according 
to Equation 3.16 and Equation 3.17, we have Traffic ḱ(t´, t) ≥ Traffick(t´, t). 

b), Otherwise, if link is busy at time t after the shifting, we can use the same 
arguments as used in the sub-case b) of Case I. The non-decreased workload 
leads to a non-increased length of idle time. Hence, Traffic ḱ(t´, t) ≥ Traffick(t´, t) 
still holds. 

The above analysis yields: 

( ) ( )ttTrafficttTraffic kk ,','' ≥ .                      (3.21) 

This concludes Lemma 3.2       □ 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

The importance of Lemma 3.2 is summarized as follows:  

• It gives a hint on how the critical instant at the second hop can be found by studying the synchronous 
pattern at the source node.  

• The need for multiple cases and sub-cases in the proof indicates the difficulty of deriving a simple 
analytical expression of the incoming traffic volume to the second hop, which leads to the difficulty of 
deriving the worst-case delay at the second hop. Therefore, we consider developing an algorithm to 
solve this problem. 

• It also gives a hint on how to calculate the worst-case delay at the second hop efficiently. This will be 
discussed further later in this section. 

With the knowledge of each incoming flow, we are now able to study the aggregated traffic flow to the 
switch/port and to find the critical instant (in Theorem 3.2).  

Our proof idea of Theorem 3.2 is as follows. First, we partition the channel set into subsets according to 
their origins and calculate the cumulative traffic volume from each source node to the switch/port. Second, 
we calculate the queuing population, viewed as a function of time, QP(t), which is the aggregated traffic 
from all the incoming links arriving before t, excluding the amount of traffic being removed before t. Recall 
that, by finding the maximum queuing population, we also get the worst-case delay. Thus, as the third step, 
we find the critical instant.  

Theorem 3.2 Assume that FCFS queuing is used to schedule a set of real-time channels Γk={ τi: 1≤ i ≤nk} 
all of which traverse the same output port p of the switch s. Then, the critical instant for any channel τi at 
the output port is a direct consequence of the synchronous pattern of Γ at the source nodes. 

Proof. Without loss of generality, assume that channel set Γ can be decomposed into several subsets: 
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U ,                    (3.22) 

where Γk includes the real-time channels originating from the same source node k. 
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Given any message release pattern, assume that the peak value of the queuing population in the queue for 
port p in switch s occurs at time instant t (t ≥0). Obviously, t is in a busy-period. Let t’  be the end of the 
last link idle period before t (0 ≤ t´ ≤ t). 

Even if the message release pattern is not the synchronous pattern at the source nodes, t´ must be the 
message release time of at least one real-time channel. Without loss of generality, assume that τ1 releases a 
message at t´, and each of the other channels τj(2≤ j ≤n) release messages at t´  +  ∆r i, (∆r i ≥ 0), as 
illustrated in Figure 3.7.  

Let <s, p> represent output port p at switch s and let Traffick(t´, t) represent the volume of cumulative 
traffic from source node k to <s, p> during [t´, t).  

We know that the workload for the outgoing physical link of <s, p> during [t´, t), Ws,p(t´, t), is the 
aggregated traffic from the incoming links, that is: 

( ) ( )ttTrafficttW
Nnode

k
kps ,',' 

1
, ∑

=
=                        (3.23) 

Hence, the queuing population (the amount of bits that remain to be transmitted from <s, p>) at 
time t, QPs,p(t) is:  

           ( ) ( ) pspsps RswittttWtQP ,,, )'(,' −−= .                                          (3.24) 

If we shift earlier the messages released after t’ by all the other real-time channels {τ2,…, τn} to t’  keeping 
their periodicity, then Traffic ḱ(t´, t), the amount of cumulative outgoing traffic from source node k to <s, 
p> during [t´, t) after the shifting will not be decreased, according to Lemma 3.2. That is, 

( ) ( )ttTrafficttTraffic kk ,','' ≥                                            (3.25) 

Similarly, the workload for the outgoing physical link from <s, p> during [t´, t) after the shifting, W ś,p(t´, t), 
is: 

( ) ( )ttTrafficttW
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=                        (3.26) 

Hence, according to Equation 3.24 and Equation 3.25, we have: 

( ) ( )ttWttW
psps

,',' 
,,

' ≥ .                        (3.27) 

Consequently, the queuing population after the shift, QP ś,p(t), will not be decreased, because: 

            ( ) ( ) ( ) ( )tQPRswittttWRswittttWtQP pspspspspsps ,,,,,, )'(,')'(,''' =−−≥−−= .            (3.28) 

Since the outgoing link from <s, p> is not idle during the time interval [t´, t) before the shift, there will be 
no link idle time during the time interval [t´, t) after the shifting. If we now consider the message release 

 

Figure 3.7. Timing figures used in the proofs of Theorem 3.2.  



 22 

pattern from time t’  on, we have obtained the synchronous pattern at the source nodes and the maximum 
queuing population (the worst case) at the switch port with no link idle period prior to it. 

This concludes Theorem 3.2.       □ 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

Theorem 3.2 suggests studying the schedule of the synchronous pattern in the first busy-period. Therefore, 
in our worst-case delay calculation algorithm, we check the delay within the first busy-period under the 
synchronous pattern. 

Similar to the improvement suggested in Equation 3.10, we do not need to calculate the worst-case delay at 
the second hop for each real-time channel, because the following equation holds: 

         psportswitchportswitchifDportTT jjiipsji ,,, 1,1,1,1,,1,1, ==== ,                          (3.29) 

where Dports,p is the worst-case delay for the frames through output port p in switch s. Therefore, the 
worst-case delay analysis at the switch/port pair can be improved by simply calculating Dports,p for each 
port. 

According to the observation in Figure 3.2, the worst-case delay at the second hop does not always occur at 
the beginning of the first busy period. However, Lemma 3.2 shows the difficulty of finding a simple 
analytical expression to calculate the maximum queuing population and the worst-case delay. That means 
that the calculation of Dports,p will differ from the calculation of Dnodek in the sense that we must check 
the queuing population at each time instant during the first busy period in order to find the maximum value.  

The calculation of Dports,p is an utility function that checks the queuing delay (queuing population) at 
different time instants, and it is presented in Algorithm 3.1. The important issues addressed in Algorithm 
3.1 are described below. 

• First, according to Lemma 3.2, the examined interval can be limited to the first busy-period, which 
reduces the time and memory complexity of the algorithm. Without loss of generality, the start of the 
busy-period is assumed to be at time instance 0.  

• Second, to calculate Dports,p, we check the amount of queued traffic (in bits) at certain time instants. 
However, making checks at bit-level resolution suffers from high computational complexity. In our 
analysis, checking the queuing population will therefore be event driven. To that end, the queuing 
population will be checked only at such time instants when  

1) a new period of any related logical real-time channel starts. 

2) the output queue from any source node becomes empty.  

Our rationale for this checking strategy is as follows. 

Recall that the queuing population is the aggregated traffic volume from all the incoming links 
(Equation 3.22). Hence, the task of checking the queuing population corresponds to checking the 
value of Traffick(t´, t). We will now derive the guidelines of how to estimate Traffick(t´, t) by 
considering the following two cases (illustrated in Figure 3.8 (a), and Figure 3.8 (b), respectively). 
The first one represents the case in which the link from k is idle at time instant t. The second one 
represents the case in which the link from k is busy at time instant t.  

Case 1. As illustrated in Figure 3.8 (a), the link from node k is idle. Hence, the cumulative 
workload during [t´, t) has been delivered to the next hop, that is: 

( ) ( )ttWttTraffic kk ,',' = .                       (3.30) 

As long as t remains in the same idle period, the value of Traffick(t´, t) does not change. 
Therefore, we only need to keep track of its value at the beginning of this idle period, that 
is, the time instant when the output queue at the source node becomes empty.  
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Case 2. As illustrated in Figure 3.8 (b), the link from k is busy at time instant t. Note that link from 
node k may have one or several idle periods during [t´, t). Let tidle be accumulated length 
of all link idle periods during [t´, t). Thus, we have: 

( ) )'(,' idlekk tttRnodettTraffic −−= ,                                             (3.31) 

As long as t remains in the same busy period, the value of Traffick(t´, t) does not change 
due to the unchanged value of tidle. Therefore, we only need to keep track of its value at the 
beginning of this busy period. Note that a busy period is caused by a message release of at 
least one real-time channel. Thus, we need to recalculate the value of Traffick(t´, t) when 
any related real-time channel starts a new period.  

The above observations suggest us to check the queuing population only at such time instants at which 
a new period of any related logical real-time channel starts or at which the output queue from any 
source node becomes empty. It should be noted that the queuing population of an output queue in the 
switch is either constant, monotonically increasing or monotonically decreasing between two such 
adjacent time instants. This guarantees that we do not exclude the peak values of the queuing 

Algo_3_1(s, p); 
   Input (s, p); 
   Output ( Dports,p, BSs,p) 
 
1.  Initialization. 
     Input (s, p, Nchs, Nnode, Nswi, Nport[1..Nswi], Rnode[1..Nnode], Rswi[1..Nswi][1..  Nport[1..Nswi]]) ;  
     t=0; tstep=0; Q=0;  Dports,p =0; Pnode=zeros[1..Nnode]; 
2.  Find out the queuing population, Q, for <s,p> at time instant t. 
      2.1   Keep track of the worst-case queuing delay, Dports,p. 

               if   ( Q >  Dports,p )    then      Dports,p = Q;    end if  
      2.2   Find out how many bits on the way for each incoming physical link queued in each source node. 
               for  i = 1..Nchs 
                    if  

1,1, ,, ii PortSwitchps =  && mod (t, Tperiod,i)==0    

                         then   Pnode [Sourcej] = Pnode [Sourcej] + Cj ;    
                   end if 
               end for 
       2.3  Send bits from each incoming link to the output queue in the switch. 
              for  i=1..Nports 
                    if   (Pnode [i] >0)   
                          then  Pnode [i]= Pnode [i] -  Rnodej tstep; 
                                   Q = Q + Rnodej tstep;  
                    end if 
              end for 
       2.4  Remove bits from the output buffer. 
                   Q = Q - Rnodej tstep;    

2.5   Find out next check time instant, either the time when the queue at an end node is empty or the time when a 
new period of one logical real-time channel starts. 

               [ ] { } ;
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      2.6  Increase t and reset tstep. 

  ;0 =  ;+=      tsteptsteptt  

3. If it is not the end of the first busy-period, check the queuing population at next time instant. 
     if   ( t < BP(Γ) )    then     repeat step 2;     end if  

4. Return (  Dports,p =Dports,p / Rswis,p , BSs,p =Dports,p). 

Algorithm 3.1. Dports,p and BSs,p calculation algorithm (FCFS queuing and <s, p> only receiving 
real-time traffic from source nodes. 
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population. After checking all such critical time points during the first busy-period of the synchronous 
release pattern, we consequently get the maximum queuing population. 

• Third, we simulate the transmission over the physical links in Algorithm 3.1 by keeping track of the 
exact amount of incoming traffic at each time interval. The simulator works as follows. After a given 
time interval, we transfer a certain amount of bits from each incoming physical link to the output queue 
in the switch. Meanwhile, if the output queue in the switch is not empty, a certain amount of bits are 
sent to the outgoing link. 

To conclude, the output of Algorithm 3.1 is the tight worst-case delay because we do not miss the peak 
value and we do not overestimate according to the previous discussion.  

3.4 Case 3: Switches receiving traffic from source nodes as well as other 
switches 

In this section, we will show how to calculate the worst-case delay for a switch/port that can receive traffic 
both from source nodes and other switches. Similar to the analysis in Section 3.3, we first find the critical 
instant and then calculate the maximum queuing population and worst-case delay.  

Recall that the difficulties in predicting aggregated jitter leads to a decreased accuracy in the traffic models 
after the second hop. Without an accurate traffic model, there is no well-established way of computing the 
tight worst-case delay. However, it is still possible to obtain a guaranteed worst-case delay after the second 
hop, but at the price of some pessimism in the estimation. 

Similar to the case of the second hop (Lemma 3.2), the critical instant causing the worst-case delay at the 
considered hop is the scenario in which the first messages of all the relevant channels (those traversing the 
considered switch/port) arrive at their previous hops at the same time. Hence, we can deal with the worst-

 

(a) 

 

(b) 

Figure 3.8. Illustration of event-driven queuing population checking. (a) Case I: [ )tt ,'  is in a busy-

period. (b) there is idle time during [ )tt ,' . 
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case delay analysis in a similar way as we did for the second hop: we first derive the worst-case delay in 
the first busy-period and then use a utility function to calculate the queuing population.  

Unfortunately, another fact complicates the delay analysis after the second hop. Figure 3.9 illustrates this 
issue regarding the delay at <s, p>. Here, τ1 and τ2 are the relevant channels, while τ3 is an interfering 
channel. τ1 originates from node 1, traverses port <s’, p’>, port <s, p> and finally arrives at node 2. τ2 is 
relevant because it also traverses port <s, p>. τ3 originates from node 1, traverses port <s’, p´´> and finally 
arrives at node 3. Although τ3 does not traverse port <s, p>, it does interfere with τ1 at source node 1. 
Therefore, even at the beginning of the busy period of the outgoing link of port <s, p>, when the messages 
of τ1 and τ2 leave at their previous hops at the same time, not-yet-transmitted frames belonging to τ1 might 
remain in the output queue of the previous port <s’, p’>, due to interference with frames of τ3 at node 1 
during the previous busy period. 

This observation suggests that the delay analysis should also consider the remaining frames in the 
intermediate switches. Specifically, in order to find the worst-case delay at such port, we also need to find 
the upper-bound of the additional delay introduced by such remaining frames in the previous port. Since 
we choose not to use traffic regulators, we cannot predict for how long time the messages have remained in 
the buffer. This leads to the challenge of predicting the maximum volume of remaining frames. Fortunately, 
the problem can still be solved utilizing the analysis for the previous hops. To that end, we conceive an 
idea of reducing the problem to easily solvable cases.  

Before we present our algorithm, we use the example shown in Figure 3.9 to explain our idea. For example, 
to analyze the delay at port <s, p>, we need to calculate the maximum populations of the remaining frames 
of each relevant channel at the previous hop if the previous hop is a switch/port (<s’, p’> in this example). 
We derive that the maximum populations of the remaining frames at <s’, p’> equals to BSs’,p’, by 
concerning the facts, a) the upper bound of the buffer population at <s’, p’> can be calculated by using 
Algorithm 3.1; b) in the worst case, all these queued frames traverse <s, p>. 

By taking the above discussions into account, we can now propose an iterative way to solve the problem. 
The iterative algorithm is described in Algorithm 3.2. To calculate the worst-case delay for channel i at its 
jth switch/port, Ti,j, we begin with the calculation at the first switch/port, then proceed to the next hop by 
taking the remaining frames into account, finally stop when having the delay for the jth switch/port. The 
worst-case delay and buffer size calculation for each switch/port is calculated by Algorithm 3.3, which is 
an extension of Algorithm 3.1, in the sense that we use the similar idea of keeping track of the queuing 
population during the first busy period but taking the remaining frames at the previous ports into account. 
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Figure 3.9. Traffic injection and interference after the second hop. 
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The iterative idea behind Algorithm 3.2 implies an essential demand on deadlock free routing, meaning 
that the network ensures that the route for each logical real-time channel is individually loop free and that 
the routes for all logical real-time channels do not interact in a way that would create deadlocks.  

Algorithm 3.3 is extension of Algorithm 3.1, in the sense that we use the similar idea of keeping track of 
the queuing population during the first busy period but taking the remaining frames at the previous ports 
into account. 

Note that as more hops are considered in the Algorithm, more pessimism will be introduced by the 
recursive approach. Therefore, we will evaluate the amount of pessimism by simulations. This is what we 
do in Chapter 5. 

Similar to the improvement suggested in Equation 3.20, we do not need to calculate the worst-case delay at 
hop <s, p> for each real-time channel, because the following equation holds: 

         psportswitchportswitchifDportTT kjkjkikipskjki ,,, ,,,,,,, ==== ,                            (3.32) 

where Dports,p is the worst-case delay for the frames through output port p in switch s. Therefore, the 
worst-case delay analysis <s, p> can be improved by simply calculating Dports,p for each port. 

3.5 Summary  

In this chapter, we have presented the worst-case delay analysis for different types of isolated network 
elements: a source node receiving real-time traffic from applications, a switch only receiving real-time 
traffic from source nodes and a switch receiving real-time traffic from both source nodes and other 
switches.  

We have developed methods to obtain accurate worst-case delays and buffer bounds for the first two cases. 
For the third case, we have also developed a recursive algorithm to calculate the worst-case delay and 
buffer bound, which might give pessimistic results, noting the fact that it is difficult to avoid 
overestimation for that case. We are aware that the obtained worst-case delay may be not tight. In order to 
access the quality of that, we must do simulation study. Our simulation results will be presented in Chapter 
5. 

With the worst-case delays at isolated network elements, we are able to obtain the end-to-end worst-case 
delay and carry out real-time analysis for the whole communication network in the subsequent chapters. 

Algo_3_2 (i, j) 
   Input (i, j) 
   Output ( Ti,j ) 
 
1   for  (k=1; k<= j; k++ )   

Call Algo_4_3 to calculate the worst-case delays at port <switch i,k, port i,k >; 
      end for 
2   s=switch i,k. p=port i,k 
3   Ti,j=  Dports,p 
4   return ( Ti,j ) 

Algorithm 3.2.  Iterative method to calculate Ti,j, the worst-case delay for τi at its jth hop (j ≥1) .  
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Algo_3_3 (s, p); 
   Input (s, p); 
   Output ( Dports,p, BSs,p) 
 
1.  Initialization.  
       Input (Nchs, Nnode, Nswi, Nport[1.. Nswi], Rnode[1.. Nnode], Rswi[1.. Nswi, 1.. Nports[1.. Nswi]] s s, p,); 
         t=0; tstep = 0; Q = 0; Dports,p = 0;  PNbuffer = zeros[1.. Nnode]; PSbuffer = zeros[1.. swi, 1.. Nport[1.. Nswi]]];  
2  Add the former remaining bits in each previous switch. 
           for i = 1..Nchs 
               if  ({s,p} is the kth element of  Routei ) && (k>1)  
                     then      

                  Call Algo_4_3 to calculate the worst-case delays at port <switch i,k-1, port i,k-1 >; 
                               [ ] [ ]1,1,1,1, ,, −−−− = kikikiki PortSwitch  BSPortSwitchPSbuffer ;     

              end if 
            end for 
3. Calculate the queuing population, Q, for <s, p> at time t.  
       2.1 Keep track of the worst-case queuing delay, Dports,p, at output port p in the switch s. 

            if  (Q >  Dports,p )          then        Dports,p = Q           end if 
       3.2 Find out the amount of bits on the way queued for each incoming link. 
           for i = 1..Nchs 
               if  ({s,p} is the kth element of  Routei ) && mod(t, Tperiod,j)==0  then    
                     if   k == 1 
                           then         PNbuffer [Sourcei] = PNbuffer [Sourcei] + Ci ;     

                           else         [ ] [ ] ikikikiki CPortSwitchPSbufferPortSwitchPSbuffer += −−−− 1,1,1,1, ,, ; 

                     end if 
              end if 
            end for 
     3.3 Transfer bits from the previous port to the considered port. 
            for i =1..Nnode 
                if  (PNbuffer [i] >0)    then 
                      PNbuffer [i] = PNbuffer [i] − Rnodei tstep;  
                        Q =  Q + Rnodej tstep ;  
                  end if 
            end for 
            for I =1..Nswi 
                  for j =1..Nporti 
                        if  (PSbuffer [i,j ] >0) && (i!=s) || (j!=p)     then 
                             PSbuffer [i,j ] =  PSbuffer [i,j ] − Rswii,j tstep;  
                                Q =Q + Rswii,j tstep ;  
                           end if 
                end for 
           end for 
       3.4  Remove bits from the output buffer. 
               Q = Q − Rswis,p tstep;    

      3.5 Find out next check time instant, either the time when one incoming link is empty or the time when a 
new period of one logical real-time channel starts. 
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    3.6  Increase t and reset tstep. 
             t = t+tstep;  tstep=0; 
4. If it is not the end of the first busy-period, check the queuing delay at next check time instant. 
     if   ( t < BP(Γ) )    then     repeat step 3;     end if  

5. Return ( Dports,p = Dports,p / Rswis,p , Bs,p=Dports,p). 
Algorithm 3.3.   Dports,p and BSs,p calculation algorithm for FCFS queuing at the switch port 
communicating with source nodes and other switches.  
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Chapter 4 Real-time Analysis for Switched Ethernet 
Networks 
Based on our worst-case delay estimation for isolated network elements in Chapter 3, we will now propose 
deterministic approaches towards end-to-end delay analysis of real-time traffic under two switched 
Ethernet network configurations: standard switched Ethernet with FCFS in all elements and switched 
Ethernet with source node EDF. Our analysis is developed for networks with multiple switches, which can 
of course be used for single-switch networks. 

Recall that if only schedule the traffic according to FCFS without any further analysis, we can only provide 
best-effort service. In this section, we will use the results achieved in Chapter 3 to find the schedulability 
condition to guarantee that all channels meet their deadlines.  

In accordance with the definitions and discussion in Chapter 2, the time constraints are guaranteed by 
addition of real-time channels. The test is divided into two steps: checking the utilization constraint and the 
delay constraint. 

First we must check the utilization constraint. It is obvious that the utilization for the physical link from 
any source node k to the switch, UNodek, must be less than or equal to the maximum value, 100%: 

  %100
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Likewise, and for the physical link from any switch/port pair <s, p >, Uswis,p, must be less than or equal to 
the maximum value, 100%:  

  %100
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Uswi .                     (4.2) 

The utilization check is not enough. Furthermore, we need to verify whether or not the worst-case end-to-
end delay of each channel does not exceed its deadline, that is,  

  idliedelaye TT ,,2 ≤ .                       (4.3) 

The end-to-end worst case delay is illustrated in Figure 4.1, which includes worst-case delay at each hop 
and propagation delays on the traversed physical links.  

Taking the delays from Theorem 3.1 and Algorithm 3.2, we have 
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where Tswitch and Tnode are the worst case process latency for an Ethernet frame at the top of the hard real-
time queue to leave the source node and to leave the switch, respectively, since we cannot interrupt the 
transmission of frames that have been stored in the NIC (Network Interface Card) or the transmission of 
frames on a physical link. We assume (the constant can however, easily be changed in the equation):  

 

Figure 4.1. Timing diagram of the worst-case end-to-end delay over standard switched Ethernet 
only utilizing FCFS. 
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 Tnode = 2Tframe,                      (4.5) 
 Tswitch = Tframe,                                 (4.6) 

where Tframe  is the transmission duration of a maximum-sized Ethernet frame (1526 bits) over the Ethernet 
medium, which is 121 µs for Fast Ethernet and 12 µs for Gigabit Ethernet. The operating system delay is 
not treated in this paper, but can also be added as a constant in the worst-case delay calculation [Skeie et al. 
2002] [Bello and Mirabella, 2004]. 

If the above utilization constraint is met for all the physical links and the delay constraint is met for all the 
logical real-time channels, we accept the real-time channels and guarantee that the real-time channels meet 
their deadlines. 

In the previous sections, we have developed schedulability conditions under two different switched 
Ethernet network configurations. The schedulability test is done by the admission controller, which can be 
implemented in an end node or the switch. Furthermore, our analysis provides the flexibility of running the 
admission control either offline or online.  

In Chapter 3, we have discussed that the delay analysis for Case 3 is not accurate. Hence, it is obvious that 
the extended end-to-end analysis for networks with multiple switches is not accurate.  

However, in Chapter 3, we have proved that our delay analysis at the source node and at the switch in 
single-switch network is accurate. Furthermore, is extended end-to-end analysis for single-switch network 
is still accurate? The answer to this question is no. Even though the worst-case delay is accurately 
estimated locally, but the global aggregation can lead to pessimism. The accuracy of our end-to-end 
analysis relies on the co-appearance of the worst-case scenario at the source node and the switch port. 
Unfortunately, the channel sets at a source node and at a switch port are usually not the same one. At a 
source node, we analyze the channels originating from this node but may traversing different switch ports, 
while at the switch, we consider the channels may originating from different source nodes but traversing 
the same port in the switch. Obviously, the worst-case scenario at the source node and that at the switch 
may not co-appear. Therefore, the end-to-end analysis is not accurate. 

In Chapter 5, we will use simulation analysis and comparison analysis to verify our feasibility analysis. 
 



 30 

Chapter 5 Performance Evaluation  
In this section, we will evaluate our real-time analysis by simulation and comparison study, concerning the 
previous discussions on the fact that our estimation on end-to-end worst-case delay may not be tight. We 
will do two types of study. The first one is a simulation evaluation of our analysis, while the second one is 
to compare with NC both conceptually and experimentally. 

5.1 Simulation Evaluation on our analysis 

In order to evaluate the performance of our approaches, we conducted several sets of simulations. In the 
first set of simulations, we evaluate the performance of the admission control algorithm for different traffic 
loads and network characteristics. Packet level simulations are conducted in the second set of simulations 
for observation of, e.g., the average end-to-end packet delay.  

Experimental Setup  

In this section, we present our simulation setup. 

We have simulated a network with a single full-duplex Ethernet switch and a number of end nodes. The 
Fast Ethernet switch with the same bit rate on all ports, 100 Mbits/s, is chosen in most of the following 
simulations except one simulation shown in Figure 5.1(c).  

We have developed a simulator including three main function blocks: traffic generation, admission control 
and packet transmission. The first step is the traffic generation. In each simulation, the real-time channels 
are randomly generated with uniformly distributed source and destination nodes. Then the logical real-time 
channels are checked one by one by the admission controller as to whether or not they have been accepted. 
The periodic hard real-time traffic intensity is increased by increasing the number of logical channels 
traversing the system. The last step is to deliver the packets following the defined traffic handling policy, 
the priority FCFS-queuing.  

To evaluate our real-time analysis, we have conducted both channel level simulations and packet level 
simulations. In the channel level simulations, only the first two steps, traffic generation and admission 
control, are executed, while in the packet-level simulations, all three steps are executed. 

Such simulations are run 100 times to get the average performance at different traffic and network 
characteristics.  

Certain assumptions were made: 

• Hard real-time traffic is periodic, and the packets are generated at the beginning of the period. 

• All buffers are large enough. Therefore no packet loss occurs because of buffer overflow. 

• The link propagation delay is set to 500 ns, corresponding to a 100 meter link. 

Network Utilization 

The aim of the first set of simulations is to observe the performance of our feasibility analysis. For this 
purpose, it is important to see how many real-time channels that can be accepted in the system, under the 
condition of guaranteeing the worst-case delays for all real-time channels. More accepted channels means 
lower worst-case delays in the estimation made by the admission controller. Therefore, we measure the 
network utilization, UNet, which is defined as below. 

Definition 5.1 The network utilization, UNet, for the set of all the accepted real-time channels 
{ }nτττΓ ,..., 21=  in the network is the average fraction of time that one link is busy, that is, 
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Figure 5.1 shows the relation between the network utilization and the total number of requested real-time 
channels.  
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Figure 5.1: Network utilization vs total number of requested real-time channels. (a) Different deadlines. 
(b) Short messages. (c) Asymmetric traffic distribution (1 master node, 31 slave nodes).  
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How end-to-end deadlines affect utilization is presented in Figure 5.1(a). The number of nodes is 8. The 
period is set to 5 ms for all the logical real-time channels, the capacities are randomly generated from 1492 
bits to 8000 bytes, and the deadlines are randomly selected from a certain set. We observe different results 
when the worst-case delays set is changed among the values A={x | 1 ms ≤ x ≤ 5 ms}, B={3 ms}, C={5 
ms} and D={10 ms}. In other words, sets B, C and D have the same deadlines for all channels. Note that 
the lowest utilization is obtained when all the end-to-end deadlines are chosen from set A, which includes 
very short end-to-end deadlines, and the highest utilization occurs when end-to-end deadlines are chosen 
from set D, which includes long end-to-end deadlines. The reason is that a longer end-to-end deadline 
makes it easier to meet the constraint and thus higher utilization can be achieved, which has already been 
proven by the scheduling theory. Figure 5.1(a) also reveals that our system can reach rather high utilization, 
for example, it reaches 90% when the worst-case delay is twice the length of the period. 

In many real-time systems, for example, automation industry, a major fraction of the traffic consists of 
short messages [Weber et al. 1999]. Therefore we have carried out a simulation study for real-time short-
message traffic, shown in Figure 5.1(b). There are 32 nodes in the network. The period is set to 1 ms for all 
the logical real-time channels, the end-to-end deadlines are randomly generated from 1 ms to 2 ms, and the 
capacities are randomly selected from a certain set. We observe different results when the capacity set is 
changed among the values A={x | Tmind ≤ x ≤ Tmaxd} including variable-sized frames, B={Tmind, Tmaxd} 
including 50% very short messages, and C={Tmaxd}, which only has fix-sized frames. Figure 5.1(b) verifies 
that resources can be efficiently used in many situations with our feasibility analysis, e.g. in the case where 
there is a large amount of short messages in the system.  

Considering the fact that one of the key requirements in the fieldbus domain is to transfer data from a 
master node to a number of slave nodes, we have simulated a network with asymmetric traffic distribution, 
shown in Figure 5.1(c). The system has one master node that periodically distributes hard real-time traffic 
to the other 31 slave nodes. The period is set to 5 ms for all the real-time channels, capacities are randomly 
generated from 1492 bits to 8000 bits, and the end-to-end deadlines are randomly generated between 1 ms 
to 10 ms. It can clearly be seen that, when the traffic is unevenly distributed in the system (slave nodes 
only send packets to the master node), a dramatic performance gain is achieved by the different bit-rate 
network where the master node is connected to the switch via a link with a bit rate of 1 Gbits/s and each 
slave node is connected to the switch via a 100 Mbits/s link. The network with the same bit rate on all ports 
(100 Mbits/s) instead experiences the link between the master node and the switch as a bottleneck. It can 
thus be concluded that resources are more effectively utilized by using a switch with different bit rates than 
by using a homogeneous bit-rate switch for this master-slave traffic pattern. As mentioned, our feasibility 
analysis supports such configurations. 

Throughput measured by packet-level simulation 

In addition to network utilization, throughput has been used as the performance measure for 
communication systems. 

Definition 5.2 Throughput, TP (Mbits/s), is the amount of traffic transmitted per time unit in the network. 

We conducted packet-level simulations to measure the throughput. In our simulation, the HRT traffic is 
generated and checked in the same way as in the previous simulations. Meanwhile, we keep the periodic 
SRT traffic intensity at a constant rate of 100%. If the HRT queue is empty, the bandwidth can be used to 
carry SRT traffic. Such a simulation set-up is effective to observe how different traffic classes affect each 
other and to show the maximum possible throughput for both HRT and SRT.  

Figure 5.2 provides us with the information of how the HRT traffic intensity affects the throughput. There 
are 8 nodes in the network.  

Figure 5.2(a) shows the results when every logical real-time channel has a period of 10 ms, a capacity of 
14920 bits and a end-to-end deadline of 10 ms. It can be seen that an increasing HRT traffic load leads to a 
steady increase in HRT throughput, while the SRT traffic experiences a steady decrease due to its low 
priority. The total throughput reaches up to a value of about 100 Mbits/s. 
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Figure 5.2(b) illustrates the results when having traffic with different traffic parameters. The period is 
randomly chosen from the set {3 ms, 6 ms and 9 ms}, the capacity is 14920 bits, while all end-to-end 
deadlines are set to 15 ms. The trends of the curves are similar to the curves in Figure 5.2(a), but where the 
maximum possible HRT traffic load is higher, because the parameters of the real-time channels make it 
possible to accept more HRT traffic.  

End-to-end Delay 

In the admission algorithm, in order to achieve the guaranteed real-time services, we predict the worst-case 
end-to-end packet delay. However, it is also interesting to see the average performance. For example, what 
is the average packet delay? How much is the difference between the average delay and the worst-case 
delay? Is our delay prediction pessimistic or not? In this section, we conduct simulations to answer these 
questions.  

The end-to-end delay is defined as the time from the moment a packet is ready to be transmitted to the 
moment the packet has successfully arrived at the destination, which includes the transmission delay, 
queuing delay and link propagation delay.  

Definition 5.3 The predicted worst-case end-to-end packet delay, PWPD (in s), for the set of all the 
accepted real-time channels { }nτττΓ ,..., 21=  in the network is the longest end-to-end packet delay 

predicated in the real-time analysis, that is, PWPD = max (Tsdelay,i).  

Definition 5.4 The average end-to-end packet delay, APD (in s), for the set of all the accepted real-time 
channels { }nτττΓ ,..., 21=  in the network is the average end-to-end packet delay obtained by running 

packet-level simulation for some time, obtaining the end-to-end delay for each packet and then calculating 
the average .  

Definition 5.5 The experienced longest end-to-end packet delay, EWPD (in s), for the set of all the 
accepted real-time channels { }nτττΓ ,..., 21=  in the network is the longest end-to-end packet delay 

obtained by the packet level simulation.  

The different end-to-end delays are plotted in Figure.  5.3. The results reported in Figure 5.3(a) were 
conducted with every logical real-time channel having a period of 6 ms, a capacity 14920 bits and an end-
to-end deadline of 6 ms. Figure 5.3(b) considers different parameters for real-time channels. The period is 
randomly chosen from the set {3 ms, 6 ms and 9 ms}, the capacity is 14920 bits and all the worst-case 
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(a)                                                         (b) 

Figure 5.2. Throughput vs total number of accepted hard real-time channels. (a) Same parameters 
for all real-time channels. (b) Different parameters are selected for real-time channels. 
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delays are 15 ms. Both graphs verify our feasibility analysis. The value of PWPD is always higher than the 
values of APD and EWPD, as we expected. The reason is that the worst-case does not happen all the time, 
although it must be considered in the admission control. 

5.2 Comparision  

This section aims a comparison study of our method with another switched Ethernet solution based on NC 
[Loeser and Haertig, 2004A] [Loeser and Haertig, 2004B]. The motivation for making the comparison is 
that the two approaches are based on the same network architecture (star topology) and similar traffic 
handling (FCFS queuing) but use different traffic models (periodic or so called (r, b)-model) and different 
analytical schemes (schedulability analysis and NC) to calculate the worst-case end-to-end delays. We will 
first present the model transformation from the periodic traffic model used in our analysis into the model 
used in NC, and then present the conceptual and experimental comparison. 

Model transformation 

The traffic model used in NC analytical scheme is called (r, b)-model [Cruz 1991 A] [Cruz 1991 B], which 
satisfies certain regularity constraints and is defined as shown below. 

Definition 5.6 The arrival curve from node k, αk has the form of (r, b)-model if 

)0,0()(,0 ≥≥+≤≥∀ kkkkk brbtrtαtfor , where rk determines an upper-bound to the long term 

average rate of traffic flow and bk expresses the maximum burstiness of the traffic.  

However, the (r, b)-model can not be used directly for periodic traffic. In order to compare, we need to 
transform our periodic model into the T-SPECs model. The model transformation is presented and proved 
in Theorem 5.1. 

Our proof idea of Theorem 5.1 is as follows. First we will derive rk and bk according to their definitions, 
then we will prove that the traffic flow satisfies the (r, b)-model. 

______________________________________________________________________________________ 
Theorem 5.1. Given a set of periodic real-time channels Γ={ τ1, τ2, .., τn} transmitting on the physical link 
from source node k to a switch/port. Than the traffic flow from source node k to the switch/port satisfies 
the (r, b)-model and the parameters of the corresponding (r, b)-model are: 
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Figure 5.3. End-to-end packet delay vs hard real-time traffic load. (a) Same parameters for 
all real-time channels. (b) Different parameters are selected for real-time channels.  
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Proof. According to the definition, rk, the long term average rate, can be calculated as: 
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Obviously, the maximum burstiness of the released traffic by channel τi is Ci, according to the definition of 
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It is known that the cumulative incoming traffic from source node k to the port, ( )tak  is less than the 

cumulative workload of Γ during time interval [0, t), that is, 
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Consequently, we have: 
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Equation 4.4 shows that the cumulative incoming traffic from source node k to the port satisfies the (r, b)-
model. 

This concludes the proof of Theorem 5.1.     □ 

With Theorem 5.1, the traffic released by a given periodic channel set can be transformed into the (r, b)-
model that is used in NC.  

Conceptual comparison  

In this section, we will compare our real-time analysis with another related work [Loeser and Haertig, 
2004A] [Loeser and Haertig, 2004B]. For readers’ convenience, we use the notations defined in Chapter 2 
to explain their analysis. In that work, they use Network Calculus introduced by [Boudec and Thiran, 
2001] to derive maximum queuing length and maximum queuing delay for switched Ethernet.  

In that analysis, the delay and buffer bounds of a switch/port depend on the traffic arriving at the 
switch/port, the arrival curve, α and the availability of the switch/port to send that data, described by the 
service curve β.  

The arrival curve α is the sum of the arrival curves of the traffic from each source node k, αk . All αk has the 
form satisfying   

),min()( kkefkk btrTtRnodetα ++= .                         (5.5) 

The traffic flow arriving at a switch/port is described by its arrival curve α, which is the sum of the arrival 
curves of the traffic from at the receive ports αk , with k denoting the traffic source.  

The service curve of an Ethernet switch/port <s, p> is described by the following rate-latency function: 
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where tswitch is the switch-specific parameter describing the maximum delay (without queuing effects) after 
which the switch starts to transmit a frame once it is received.  

According to Boudec’s result [Boudec and Thiran, 2001], Dports,p, the worst-case delay of a frame for the 
output port p at the switch s is  
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Moreover, the maximum buffer size, or the amount of memory needed to store the queued frames, for the 
considered output port, is given by  
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Our theoretical proofs presented in Chapter 4 show the tightness of our worst-case delay analysis for 
network components in single-switch network, while the maximum delay and buffer size derived by 
Equation 5.7 and 5.9 may not be tight, as stated in [Loeser and Haertig, 2004A]. The reasons are discussed 
as follows. 

First, we consider the fact that the output traffic of an FCFS queue is in general less bursty than the input 
traffic, because the outgoing flow is shaped by the physical link [Boudec and Thiran, 2001]. This 
observation is crucial to avoid over-estimation of the worst-case delay at the switch ports and we take the 
advantage in our anlysis by concerning this fact. In contrast, NC analysis involves inefficiency in finding 
performance bounds by iteratively applying output burst bounds hop-by hop. 

Moreover, in our proofs in Chapter 3, we know that ),min()( kkefkk btrTtRtα ++≤  holds for a 

synchronous periodic real-time channel set, because the incoming link to a switch/port may not always be 
busy. However, to transform the periodic model to the (r, b)-model, we will lose some information of the 

traffic model. Specifically, the traffic assumption in NC, ),min()( kkefkk btrTtRtα ++=  brings 

pessimism for analyzing a synchronous periodic channel set. Consequently, the maximum delay and buffer 
size derived by Equation 5.7 and 5.9 may not be tight. In contrast, we are able to use an algorithm 
(Algorithm 3.1) to keep track of the exact amount of incoming traffic volume to a switch/port, without any 
overestimation in our analysis.  

Simulation comparison  

Although the conceptual comparison shows that the worst-case delay for the components in a single-switch 
network derived by our analysis is tight, we are aware of the fact that neither our end-to-end worst-case 
delay estimation or the NC estimation is always tight. Therefore, we have conducted simulations to 
compare our analysis with NC for Ethernet with single switch. 

To compare two real-time analysis schemes, it is important to see the allowed amount of HRT traffic in the 
network, under the condition of guaranteeing the worst-case delays for all real-time channels. More 
allowed real-time traffic means less overestimation in the worst-case delay analysis. Hence, in our 
experimental comparison, we observe the relation between the utilization of the physical channels and the 
total number of requested real-time channels, as illustrated in Figure 5.4. There are 8 nodes in the network. 

In Figure 5.4(a), the period is set to 5 ms and the capacity is set to 2000 bits for all the logical real-time 
channels, while the end-to-end deadlines are randomly generated between 1 ms and 10 ms. It can be 
observed that the utilization steadily increases when the traffic load is increased. Later, it keeps the same 
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value because it is difficult to accept a new logical real-time channel under the high workload in the system. 
Note that a higher utilization (about 30% higher) can be gained with our solution.  

If we increase the capacities for all the logical real-time channels to 8000 bytes, we obtain the results 
shown in Figure 5.4(b). Note that a quite higher utilization (more than 100% higher) can be gained with 
our solution.  
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Figure 5.4. Utilization comparison. (a) Small capacities. (b) Large capacities. (c) Variant 
capacities. 
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In the first two simulations, all channels have the same capacity. For the third simulation set-up shown in 
Figure 5.4(c), the capacities are randomly selected between 1492 bytes (one full-sized Ethernet frame) and 
8000 bytes. Figure 6(c) shows, under this traffic generation, that our feasibility analysis still gains higher 
utilization (70% higher) than NC-based analysis. 

It can be observed from Figure 5.4 that our analysis achieves higher utilization than the NC analysis in 
many cases, although our analysis and the NC analysis are effective in the sense of guaranteeing the traffic 
meeting their deadlines. It is seen that the larger the capacities are chosen, the higher utilization is gained 
by our analysis. The reason for this is, i.e., the traffic smoothing transmission characteristics are considered 
in our analysis, thus allowing a less pessimistic delay. In contrast, in the Network Calculus analysis, the 
large capacities mean large burst values and large burst values lead to longer worst-case delays.  

The following conclusions can be drawn from the above simulations and comparison studies. i) Our 
analysis is effective. ii) Our analysis gives tighter estimation than NC in majority of the cases. 

5.3 Conclusion  

In this report, we contribute with the real-time analysis for periodic hard real-time traffic in switched 
Ethernet networks only utilizing FCFS-queuing. The correctness of our analysis is given by strict proofs. 
For components in single-switch networks, we derive the tight worst-case delay, which has not been 
achieved by the other related works. Although the end-to-end analysis for single-switch network may not 
be tight, our simulation and comparison study show that our analysis is less pessimistic than NC in the 
majority of the cases. For networks with multiple switches, we have developed an iterative algorithm to 
calculate the worst-case delay and buffer bound, which might give pessimistic results. Moreover, our real-
time analysis is flexible and practicable, since it supports networks with multiple switches, variable-sized 
frames, and switches with different bit-rate ports. 

One of our future works is to evaluate our analysis for networks with multiple switches by simulation study.  
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