Introduction

- **Mission**
 - Develop new programming technologies enabling the exploitation of many (100s) core architectures

- **Key Outcomes**
 - Programming and design methods
 - Multi-core programmable architectural solutions
 - Associated supporting tools
 - Evaluation in selected applications

- **Competence Goal**
 - Understand holistic integration of
 - multi-core SoC design
 - embedded software
 - Master smart system design for future applications
 - consumer, wireless, communication and transportation
Application Focus

- Massive real-time data-processing found in the domains of
 - consumer electronics
 - e.g., video surveillance and HD video codecs
 - telecommunications
 - transportation
 - e.g., automotive, avionics and radar

- The results of SMECY will be driven by and demonstrated in a number of industry cases from these domains
- This will cover industrial applications as well as industrial platforms
SMECY Partners

<table>
<thead>
<tr>
<th>Country</th>
<th>Industrial partners (19)</th>
<th>Short name</th>
<th>Academic partners (11)</th>
<th>Short name</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>CEA</td>
<td>CEA</td>
<td>Université Joseph Fourier Grenoble 1</td>
<td>UJF/Verimag</td>
</tr>
<tr>
<td></td>
<td>Thomson Gras Valley France</td>
<td>GVF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HPC Project</td>
<td>HPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SKYLAB Industries</td>
<td>SKYLAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STMicroelectronics (Grenoble 2)SAS</td>
<td>ST-GNB2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thales Research & Technology (FR)</td>
<td>TRT-FR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>ACE Associated Compiler Experts bv</td>
<td>ACE</td>
<td>Technische Universiteit Delft</td>
<td>TUDelft</td>
</tr>
<tr>
<td></td>
<td>Philips Medical Systems</td>
<td>PMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>Hellenic Aerospace Industry S.A.</td>
<td>HAI</td>
<td>Aristotle University of Thessaloniki</td>
<td>AUTH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>University of Ioannina</td>
<td>UOI</td>
</tr>
<tr>
<td>Czech Rep.</td>
<td>CIP plus s.r.o.</td>
<td>CIP</td>
<td>Brno University of Technology</td>
<td>BUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Czech Academy of Sciences</td>
<td>UTIA</td>
</tr>
<tr>
<td>Denmark</td>
<td>Free2move AB</td>
<td>F2M</td>
<td>Högskolan i Halmstad</td>
<td>HH</td>
</tr>
<tr>
<td></td>
<td>Realtime Embedded AB</td>
<td>RTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saab Microwave Systems</td>
<td>SMW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>SELEX SISTEMI INTEGRATI</td>
<td>SELEX-SI</td>
<td>Politecnico di Milano</td>
<td>POLIMI</td>
</tr>
<tr>
<td></td>
<td>STMicroelectronics S.r.l.</td>
<td>ST Italy</td>
<td>Politecnico di Torino</td>
<td>POLITO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Universita di Bologna</td>
<td>UNIBO</td>
</tr>
<tr>
<td>Finland</td>
<td>Nethawk Oy</td>
<td>NetHawk</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tellabs Oy</td>
<td>Tellabs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VTT</td>
<td>VTT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Thales Research & Technology (UK)</td>
<td>TRT-UK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SMECY Conceptual Approach

Platform 2012
ST

EdkDSP
UTIA

Applications (WP4)

Front-end (WP1)

Back-end (WP2)

Flow 1
Flow 2
Flow 3

Design Flow

SMECY
Platforms: UTIA EdkDSP platform

Figure 10: Basic computing element.
Platforms: UTIA EdkDSP platform (cont’d)

Figure 11: Structure of the EdkDSP
WP1 Application mapping and exploration

- Programming models,
- Optimisation and design space exploration methods and tools
- Requirements and characteristics of
 - a set of application types (from WP4)
 - a set of multi-core platform types (from WP3).

Tasks
- T1.1 Application and programming model
- T1.2 Design space exploration.
- T1.3 Intermediate representation
- T1.4 Data/control transformation and optimisation

Swedish participation: F2M, HH
Methods and tools for platform dependent optimisation and execution code generation
- taking into account
 - application constraints
 - multi-core platform

Tasks
- T2.1 Analysis for application constraints propagation and platform dependent parameters extraction
- T2.2 Platform dependent optimization
 - Data sharing / Interconnection, Memory map, HW constraints management
- T2.3: Execution code generation

Swedish participation: None
Innovative solutions for

- Programmability
- Virtualization
- Acceleration of parallel execution
- Runtime execution support

Tasks

- T3.1 Multi-core architecture for programmability and predictability (new features that make programming easier)
- T3.2 Virtualization, composability and execution model
- T3.3 Acceleration of parallel execution
- T3.4 Runtime execution supporting fault tolerance, reliability and dynamic reconfiguration

Swedish participation: HH, RTE
WP4 Application domains

- Case studies in various application domains with the purpose of:
 - defining requirements and constraints
 - performing validation, assessment and evaluation of method, tool and architecture solutions
 - at mid-term and towards the end of the project

- Tasks
 - T4.1 Radar signal processing and earth observation
 - T4.2 Multimedia, mobile and wireless transmission
 - T4.3 Stream processing (Video surveillance)
 - T4.4 Benchmarking and Cross-Validation

- Swedish participation: SMW, F2M, HH
Some figures

- Number of partners: 30
 - 19 industrial, 11 academic

- Number of countries: 9

- Number of person-months: 1915 (= 160 person-years)

- Total budget: 20 399 K€
 - EU funding: 3 406 K€
 - National funding: 6 474 K€
 - Partners’ own funding: 10 519 K€

- Project duration: 36 months