Medium Access Control in Vehicular Ad Hoc Networks

Katrin Sjöberg, Elisabeth Uhlemann and Erik G. Ström

IEEE VTS Workshop on Wireless Vehicular Communications
Halmstad University, Sweden
October 12, 2010
Introduction
What is a VANET?

• Vehicular *ad hoc* networks
• Dezentralized network topology
 – No access point or base station
 – Peer-to-peer communication
• Self-organization
• Can contain roadside units (RSU)
Characteristics of VANETs

• Share a common communication channel
• Broadcast
 – Traditional Automatic Repeat reQuest (ARQ) are not available
• The multipath environment where the radiowaves propagate
 – 5.9 GHz has been chosen for VANETs
• The number of participating nodes in a VANET cannot be restricted
Why Traffic Safety Applications?

Why Traffic Safety Applications?

.... decrease the number of traffic accidents by introducing traffic safety applications, but also to reduce congestion, travel-time, and pollution through traffic efficiency applications...

• Lane change warning
• Overtaking vehicle
• Merge assistance
• Use different communication technologies depending on application
 – IEEE 802.11p, 3G, Mobile WiMAX
Real-Time Communication

• Traffic safety applications have concurrent requirements on delay and reliability
• Packets have a deadline to meet
• Time-triggered position messages
 – 2-10 Hz, 300-800 byte
 – Cooperative awareness messages (CAM)
 – Facility: Local dynamic map
• Event-driven hazard warnings
 – Packet size and periodicity depend on traffic safety application

Broadcast

Here I am!
Medium Access Control in VANET

• Responsible for scheduling channel access to minimize interference to increase reliability
• How to guarantee these low delay applications that the packet arrives in time?
• The MAC method must be decentralized, scalable and predictable
• Only standard supporting direct vehicle-to-vehicle communication is 802.11p – 5.9 GHz
WAVE

WAVE = Wireless Access in Vehicular Environment

WAVE = IEEE 802.11p, 1609.0, 1609.1, 1609.2, 1609.3, 1609.4 and 1609.5
IEEE 802.11p

• Ratified July 2010
• PHY and MAC amendment
 – No support for access points
 – Peer-to-peer mode (ad hoc)
• IEEE 802.11a OFDM physical layer
 – 3, 4.5, 6, 9, 12, 18, 24 and 27 Mbps
 – 5.850-5.925 GHz Intelligent Transportation Systems Radio Service (ITS-RS)
 – 10 MHz channels
 – 1 control channel and 6 service channels (WAVE 1609.4)
• European standard (ETSI) – ITS G5
• Worldwide standard (ISO) – CALM M5
IEEE 802.11p – MAC

• Carrier sense multiple access with collision avoidance (CSMA/CA)
• IEEE 802.11e QoS
 – Provides 4 different priority levels
• Starts listening to the channel during one AIFS
 – Arbitration InterFrame Space (58 μs, highest priority in 802.11e)
• Channel becomes busy during listening period
 – Perform backoff by selecting a random number
 – Decrement backoff only when channel is free
• A node sends directly if the channel was free during one AIFS
CSMA/CA drawbacks

• Unpredictable channel access delay
 – Periodic messages need to be sent within its time period
 – The random backoff may cause a delay longer than the time period
 – Causes packet drops at sending node

• Collisions
 – The random backoff time chosen are discrete and thus nodes may choose the same
 • For example in 802.11e highest priority – {0 µs, 13 µs, 26 µs, 39 µs}
 – Two concurrently transmitting nodes may be located very close together

CSMA is not predictable nor scalable.
STDMA – a potential remedy?

- Self-organizing time division multiple access (STDMA)
- Already in commercial use
 - Automatic Identification System (AIS)
 - VDL mode 4
- Specially designed for position messages, e.g., CAM
- Predictable channel access delay regardless of the number of competing nodes
- In overloaded situation “collisions” are scheduled to minimize interference
- Needs synchronization between nodes
- Fixed packet length

STDMA is predictable and scalable.
Every node is allowed to choose a transmission slot from 20% of all available slots.

A certain slot is used for 3-8 consecutive frames.

Fixed number of slots in the frame. All nodes have a unique frame start!

STDMA needs position messages for scheduling transmissions in space when all available slots are occupied, i.e., the 20% of all available slots that is accessible to one particular node.
Simulator in Matlab

Data traffic model – time-driven position messages, i.e., CAMs
Vehicle traffic model – Poisson distributed, approx. 1 vehicle/100 meter

Highway scenario with 5 lanes in each direction.

We are evaluating the sending side of the system.
Channel access delay

300 byte packets, 6 Mbps, 10 Hz,

Channel access delay is not a problem in STDMA!
Interference distance

Probability that two nodes initiate a transmission at the same time.

2 Hz, 800 byte, 6 Mbps
Countermeasures

• To overcome the scalability problems with CSMA/CA
• Transmit power control
• Congestion control
 – Restrict the data traffic at the sending nodes
• Adjust the backoff window
Summary

• VANET uses a common wireless channel for broadcast communication directly between vehicles at 5.9 GHz
• CSMA has been selected as the MAC method for the first generation of VANETs through IEEE 802.11p
• When penetration of ITS equipped vehicles increases 802.11p may experience problems with unbounded channel access delay and close concurrent transmissions
• Potential remedy STDMA
Summary

• In STDMA the position information is required to schedule transmissions resulting in non-overlapping transmissions
 – Beneficial in order to protect the receivers located closest to the transmitter

• CSMA supports variable packet sizes and no synchronization is needed

• STDMA requires slot synchronization and position messages
Thank you!

Questions?

katrin.sjoberg@hh.se
Publications