Unobtrusive Assessment of Mobility and Cognitive Function
Misha Pavel
Point of Care Laboratory
Biomedical Engineering, Neurology, Medical Informatics
Overview

• ABC for Technology for Aging (Applied, Basic and Clinical)
 – Serious challenge
 – Multidisciplinary
 – Model-based
• Modeling the time course of cognitive decline
• Basic system: Unobtrusive Technology + Sophisticated Algorithms
• Examples
 – Mobility: Gait velocity
 – Medication adherence
• Technical Challenges
 – Localization
 – Identification
Current Global Age Distribution

2002

Percentage of Population over 60 years old
Global Average = 10%

Source: United Nations • “Population Aging • 2002”
Projected Global Age Distribution

2050

Sweden (>65)
2005 ~ 17%
2030 ~ 23%
2050 ~ 24%

Percentage of Population over 60 years old
Global Average = 21%

Source: United Nations • “Population Aging • 2002”
Sweden Demographics

Life Expectancy

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>83</td>
<td>86</td>
</tr>
<tr>
<td>Men</td>
<td>78</td>
<td>84</td>
</tr>
</tbody>
</table>

Facts about Elderly in Sweden, Ministry of Health and Social Affairs, September 2007
Cognitive Changes with Healthy Aging

![Graph showing mean T-scores for various cognitive abilities across different ages. The y-axis represents mean T-scores ranging from 30 to 60, and the x-axis represents age from 25 to 88. Different lines and markers correspond to different cognitive abilities, including Inductive reasoning, Spatial Orientation, Perceptual Speed, Numeric Ability, Verbal Ability, and Verbal Memory.](image-url)
Technology in Care for Elders and Chronically Ill

• Improving efficiency and quality of care
• Relieving burden on formal and informal caregivers
• Reducing cost by avoiding acute emergency care
• Early detection and monitoring of cognitive function
 – Developing and evaluating drug therapies
 – Neuro-protection techniques
 – Remediation methods (Dr. Jimison)
 – Adopting proper care level
 – Developing better diagnostic techniques, e.g., imaging

Halmstad, 2008
Multidisciplinary Problem

- Clinicians – problem identification and workflow issues
- Caregivers
- Pharmacists, social workers, etc.
- Embedded sensor systems
- Wireless and wired networks
- Data management
- Pattern detection, data mining, visualization
- Modeling cognitive, motor and social systems
- Mechanical systems and assistive devices
Brain Loss Trajectory Predicts Aging Outcome

Prior to CI onset the yearly rate of increase is higher in those who developed CI (p=0.049)

At onset there is a further increase in the yearly rate of ventricular volume increase compared to those who have not developed CI (p=0.012)

Alzheimer’s Disease Dynamics

(Consortium to Establish a Registry for Alzheimer’s Disease, 1986-96)

Estimate MMSE as a function of time

Halmstad, 2008
Modeling Dynamics of Alzheimer’s Disease

- Assumptions:
 - Define the number of affected neurons $N(t)$:
 - Test performance is proportional to the number of affected units, $N_0 - N(t)$

$$\frac{dN(t)}{dt} = rN(t)\left(K - N(t)\right)$$

- Data fit with Logistic + linear

$$S(t) = S_{\text{max}} \left[1 - a_1(t-a_2) - \frac{a_3}{1 + e^{-a_4t+a_5}} \right]$$

- Slow decline starts more than 10 years earlier

$$S(t) \approx S_{\text{max}} \left[1 - \frac{(t-13)}{64} - \frac{0.01}{1 + e^{-t+1}} \right]$$
Data From Ashford 1995

![Graph showing MMSE Score over Time (Years)](image)

- Logistic Model
- Data

Halmstad, 2008
Oregon Brain Aging Study (OBAS) MMSE Data

Halmstad, 2008
Modeling Cognitive Decline: MMSE and Verbal Fluency

![Graph showing MMSE and Verbal Fluency scores over time relative to diagnosis (Dx). The graph compares Logistic Model, Oregon Brain Aging Study (OBAS) Data, Logistic Model, and MMSE scores.](image-url)
Can we detect the onset of a decline?
What’s Wrong with Current Ways of Assessment of Elders?

- Short-term variability (mood, recent events, etc.)
- Short-term compensation – fear of nursing home
- Population norms applied to individuals
- Caregiver interview – biases and memory effects
- Difference between ability and performance
- Family and caregivers denial
- Compliance vs. report of compliance
- Subjectivity in the assessment of impairment level
- Insensitivity to slow changes
- Reporting biases: hypochondria vs. stoic
- Speed-accuracy tradeoff
Detection of Slow Changes in Behavior

Aliasing Errors + Noise

<table>
<thead>
<tr>
<th>Test Score</th>
<th>Time [months]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Green</td>
<td>"GOLD" STANDARD</td>
</tr>
<tr>
<td>R ~ 0.7</td>
<td>Test - Test Reliability</td>
</tr>
<tr>
<td>R² ~ 0.5</td>
<td></td>
</tr>
<tr>
<td>Mrs. Rosen</td>
<td></td>
</tr>
</tbody>
</table>
Continuous Unobtrusive Monitoring

Fusion
Home-based scalable assessment platform
Empirical Studies

- Laboratory experiments with the sensor systems
- Pilot study of the sensors in homes Parkinson’s disease patient/control
- Social health monitoring system
- Medication adherence tracking
- Context aware medication prompting
- Living laboratory
- Longitudinal study of healthy aging

Take home message:

Study elders at home
Assessment and Monitoring of Mobility and Activities of Daily Living
Individual Sensor Data: Looking for Patterns

Total Activity for Sun Day No. 11

Total Activity for Tue Day No. 13
Daily Sensor Activity: At stand alone home

Green – Bedroom
Pink – Kitchen
Red – Bathroom
Yellow – Living Room
Black – Door Sensors

Subject 5A

Change in Sleep Pattern

Meal Preparation
Daily Sensor Activity: Residential Facility (CCRC)

Out of the apartment (Meals, Social Activities?)

Green – Bedroom
Pink – Kitchen
Red – Bathroom
Yellow – Living Room
Black – Door Sensors
Assessment of Gait Velocity

• Why Gait Velocity?
 – Indicator of mobility
 – Related to cognitive function

• Existing approach: In clinic

• Approach: Unobtrusive assessment
 – Using accelerometers
 – Using passive sensors

• Technical problems:
 – Estimation of gait velocity and variability from the raw sensor data
 – Identification of the walking individual

Halmstad, 2008
Assessment of Gait Velocity
Simplified Approximation to the Identification Problem

- Simple Markov Model to characterize constraints and dynamics

- Compute the likelihood of an individual $X = A$ walking through the test area, given RSSI process \bar{R} and motions sensors \bar{M}

- Non-causal

Halmstad, 2008
Parkinson’s Patient and Healthy Control

66A: Control

Walking time (s/m)

80 percentile
50 percentile
20 percentile

66A: PD

Walking time (s/m)

80 percentile
50 percentile
20 percentile

Halmstad, 2008
Validation – Ground Truth – Gait Mat

- Mat with dense pressure sensors placed on a hard floor
- Measures instantaneous plantar pressure and absolute location
Laboratory Validation of the Sensor Passive IR Sensors

- Raw330: Raw Data Display with Pressure Measurement

- Distance versus Time

- GAIT MAT vs Motion Sensor
Comparison of Field Gait Velocity Measurements

- Gait Mat range
- Clinical
- Sensor Line

Walking time (secs/m)

Subject

Slow

Fast

Halmstad, 2008
Variability in walking speed increases with early cognitive impairment

Halmstad, 2008

Oregon Brain Aging Study/ORCATECH
Medication Adherence

• Problem: Assessment of medication-taking behaviors and possible intervention

• Prior Approach to Assessment:
 – Self-reports
 – Off-line measurements

• Approach:
 – Development of a wireless medication tracker
 – Installation of sensor suite
 – Schedule for medication taking (vitamin C): 2x daily

Halmstad, 2008
Medication Adherence: Good Performance

Percentage of time vitamins were taken as planned: 87.2% (morn), 83.3% (eve), 90.3% (overall)
Number of missed morning doses: 1 (For 0 of these you were out of the house)
Number of missed afternoon doses: 6 (For 0 of these you were out of the house)
Percentage of days in which you took 2 pills as prescribed: 83.3%

OHSU Vitamin Study: Data for: AUM
Medication Adherence: Typical Performance

Percentage of time vitamins were taken as planned: 88.6% (morn), 45.7% (eve), 67.1% (overall)
Number of missed morning doses: 4 (For 4 of these you were cut of the house)
Number of missed afternoon doses: 19 (For 19 of these you were out of the house)
Percentage of days in which you took 2 pills as prescribed: 77.1%
Context-Aware Medication Prompting (with Intel)

- Existing Prompting: Time based alerts
- Problems
 - Patient is busy at the time of alert
 - Patient is away from the medication dispenser
- Approach: Context-Aware Prompting
 - Detect and/or predict the probability of not taking the medication
 - Detect location – proximity to medication dispenser
 - Detect interfering activity: Sleep, on the phone, about to leave
 - Generate alerts with the highest “expected utility”
Context-Aware Prompting: Results
Context-Aware Prompting: Results

The diagram shows box plots comparing average weekly adherence (in %) across different conditions:
- No prompting
- Time-based prompting
- Location-based prompting

The adherence is measured for morning, evening, and overall periods.
Current Exercising in Senior Residential Facilities

Based on “Able Bodies” project

Halmstad, 2008
The doctor said he needed more activity. So I hide his T.V. remote three times a week.
System Configuration

- CCD
- CPU
- NTSC/IO
- TV

Halmstad, 2008
Exercise Coach

Halmstad, 2008
Elders’ Exercise – Movement in Coronal Plane
Modeling the Human Body

- 3D Model
- Body parts represented by cylinders
- 14 segments
- 12 joints
- Projection of the model into 2D image plane
Modeling the Human Body

- 3D Model
- Body parts represented by cylinders
- 14 segments
- 12 joints
- Projection of the model into 2D image plane
Resulting Inference: Perpendicular Plane
Activity Monitoring – Key Technical Issues

• Multi-person dwelling Distinguishing among the occupants of dwellings
• Localization: Minimally obtrusive localization
• Identification: Identification of a small number of individuals and recognition of new persons
Recursive Bayesian Estimation (Eric Wan)

- Probabilistic approach for estimating an unknown state probability density function recursively over time using incoming measurements and a mathematical process model.

\[
y_k = h(x_k) + w_k
\]

State: position, velocity

\[
p(y_k | x_k) \quad \text{and} \quad p(x_k | x_{k-1})
\]

Unobserved

Observed

Observation Model(s)
- Mapping from position to RSSI
Recursive Bayesian Estimation

- Probabilistic approach for estimating an unknown state probability density function recursively over time using incoming measurements and a mathematical process model.

\[p(y_k | x_k) \]

Observed

\[y_k \]

Unobserved

\[x_{k-2} \rightarrow x_{k-1} \rightarrow x_k \]

state: position, velocity

\[p(x_k | x_{k-1}) \]

Process model - Random Walk

\[
\begin{align*}
x_{k+1} &= F_k x_k + V(x_k) + w_k \\
F_k &= \begin{bmatrix}
1 & 0 & T \\
0 & 1 & 0 \\
0 & 0 & .95
\end{bmatrix} \\
x_k &= \begin{bmatrix} x_k \ y_k \ v_{xk} \ v_{yk} \end{bmatrix}
\end{align*}
\]

where

\[w_k = \text{white gaussian noise} \]

\[T = 1 \text{ second} \]

Potential field

\[
\begin{bmatrix}
10 & 0 & 0 & 0 \\
0 & 10 & 0 & 0 \\
0 & 0 & .95 & 0 \\
0 & 0 & 0 & .95
\end{bmatrix}
\]
Recursive Bayesian Estimation

- **Probabilistic approach** for estimating an unknown state probability density function recursively over time using incoming measurements and a mathematical process model.

\[x_{k-2} \quad y_{k-2} \quad x_{k-1} \quad y_{k-1} \quad y_k \quad p(y_k \mid x_k) \]

Observed

Unobserved

state: \textit{position, velocity} \quad p(x_k \mid x_{k-1})

Sigma-Point Kalman Filters

- Approximate Recursive Bayesian Estimation with Gaussian state distribution
- Superior to Extended Kalman Filter (EKF)
- \textit{Noncausal} (smoother) Implementation
Ekahau Positioning Software
Tracking Performance: Point of Care Lab (CHH)

Sigma-Point Kalman Filter
Tracking Performance: Point of Care Lab (CHH)

Sigma-Point Kalman Filter + IR Sensors

SPKF: RSSI+IR
Real-time Image-Based Localization: Work in Progress

- Ceiling-mounted fish-eye camera
Real-time Image-Based Identification: Work in Progress
Other Projects that would benefit from embedded systems

- Augmented Cognition: Assessment of an individual’s cognitive state using EEG
- Diagnosis/triage of vocal cord diseases using acoustic measurements
- Assessment of cognitive functions using computer interactions and interactive games
- Assessment of sleep quality using bed sensors, e.g. load cells
- Reconciliation of medication lists
Medication Reconciliation: RxSafe

Critical Questions:
- What medication is the patient taking?
- What should he be taking

Existing Records
- Clinic and family practitioner
- Pharmacy record
- Residential facility: Medication adherence record
- RxSafe: Tools for medication reconciliation

Missing
- Reliable embedded systems for the assessment of medication taking behaviors

Halmstad, 2008
Summary

- Continuous, unobtrusive in-vivo assessment is possible and is likely to reduce the variability of the assessment.

- Sensitive real-time monitoring can provide critical information for intervention.

- Context-sensitive intervention appears to be an effective way to improve health-related behaviors.

- But, there are many technical challenges ahead.

Halmstad, 2008
Technical Challenges

• Unobtrusive sensing of behaviors and physiological variables
• Unsupervised calibration and maintenance
• Power management and harvesting
• Integration and synchronization
• Localization
• Identification/authentication
• Adaptation of sensor systems to each individual and context
• Recognition of activities, e.g., activities of daily living
• Detection of subtle changes, e.g. cognitive decline
• Prediction of adverse events, e.g. falls
• Development of assistive cognition devices
Acknowledgements

- Adriana Miorelli-Adami
- Andre Adami
- Nicole Baggette
- Pavel Chytil
- Deniz Erdogmus
- Tamara Hayes
- Holly Jimison
- Jeff Kaye
- Zephy McKanna
- Misha Pavel

Partially Funding by:
- NIH
- NIST
- Intel
- ETAC

Halmstad, 2008